Relationship of neurite architecture to brain activity during task-based fMRI
Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast...
Ausführliche Beschreibung
Autor*in: |
Christin Schifani [verfasserIn] Colin Hawco [verfasserIn] Arash Nazeri [verfasserIn] Aristotle N. Voineskos [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: NeuroImage - Elsevier, 2020, 262(2022), Seite 119575- |
---|---|
Übergeordnetes Werk: |
volume:262 ; year:2022 ; pages:119575- |
Links: |
---|
DOI / URN: |
10.1016/j.neuroimage.2022.119575 |
---|
Katalog-ID: |
DOAJ035011386 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ035011386 | ||
003 | DE-627 | ||
005 | 20230307193728.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neuroimage.2022.119575 |2 doi | |
035 | |a (DE-627)DOAJ035011386 | ||
035 | |a (DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC321-571 | |
100 | 0 | |a Christin Schifani |e verfasserin |4 aut | |
245 | 1 | 0 | |a Relationship of neurite architecture to brain activity during task-based fMRI |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. | ||
650 | 4 | |a Gray matter microstructure | |
650 | 4 | |a diffusion-weighted MRI | |
650 | 4 | |a NODDI | |
650 | 4 | |a functional activity | |
650 | 4 | |a task-related fMRI | |
653 | 0 | |a Neurosciences. Biological psychiatry. Neuropsychiatry | |
700 | 0 | |a Colin Hawco |e verfasserin |4 aut | |
700 | 0 | |a Arash Nazeri |e verfasserin |4 aut | |
700 | 0 | |a Aristotle N. Voineskos |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t NeuroImage |d Elsevier, 2020 |g 262(2022), Seite 119575- |w (DE-627)268125503 |w (DE-600)1471418-8 |x 10959572 |7 nnns |
773 | 1 | 8 | |g volume:262 |g year:2022 |g pages:119575- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neuroimage.2022.119575 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1053811922006905 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1095-9572 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 262 |j 2022 |h 119575- |
author_variant |
c s cs c h ch a n an a n v anv |
---|---|
matchkey_str |
article:10959572:2022----::eainhpfertacietrtbanciiy |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RC |
publishDate |
2022 |
allfields |
10.1016/j.neuroimage.2022.119575 doi (DE-627)DOAJ035011386 (DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401 DE-627 ger DE-627 rakwb eng RC321-571 Christin Schifani verfasserin aut Relationship of neurite architecture to brain activity during task-based fMRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. Gray matter microstructure diffusion-weighted MRI NODDI functional activity task-related fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Colin Hawco verfasserin aut Arash Nazeri verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 262(2022), Seite 119575- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:262 year:2022 pages:119575- https://doi.org/10.1016/j.neuroimage.2022.119575 kostenfrei https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811922006905 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 262 2022 119575- |
spelling |
10.1016/j.neuroimage.2022.119575 doi (DE-627)DOAJ035011386 (DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401 DE-627 ger DE-627 rakwb eng RC321-571 Christin Schifani verfasserin aut Relationship of neurite architecture to brain activity during task-based fMRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. Gray matter microstructure diffusion-weighted MRI NODDI functional activity task-related fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Colin Hawco verfasserin aut Arash Nazeri verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 262(2022), Seite 119575- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:262 year:2022 pages:119575- https://doi.org/10.1016/j.neuroimage.2022.119575 kostenfrei https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811922006905 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 262 2022 119575- |
allfields_unstemmed |
10.1016/j.neuroimage.2022.119575 doi (DE-627)DOAJ035011386 (DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401 DE-627 ger DE-627 rakwb eng RC321-571 Christin Schifani verfasserin aut Relationship of neurite architecture to brain activity during task-based fMRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. Gray matter microstructure diffusion-weighted MRI NODDI functional activity task-related fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Colin Hawco verfasserin aut Arash Nazeri verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 262(2022), Seite 119575- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:262 year:2022 pages:119575- https://doi.org/10.1016/j.neuroimage.2022.119575 kostenfrei https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811922006905 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 262 2022 119575- |
allfieldsGer |
10.1016/j.neuroimage.2022.119575 doi (DE-627)DOAJ035011386 (DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401 DE-627 ger DE-627 rakwb eng RC321-571 Christin Schifani verfasserin aut Relationship of neurite architecture to brain activity during task-based fMRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. Gray matter microstructure diffusion-weighted MRI NODDI functional activity task-related fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Colin Hawco verfasserin aut Arash Nazeri verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 262(2022), Seite 119575- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:262 year:2022 pages:119575- https://doi.org/10.1016/j.neuroimage.2022.119575 kostenfrei https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811922006905 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 262 2022 119575- |
allfieldsSound |
10.1016/j.neuroimage.2022.119575 doi (DE-627)DOAJ035011386 (DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401 DE-627 ger DE-627 rakwb eng RC321-571 Christin Schifani verfasserin aut Relationship of neurite architecture to brain activity during task-based fMRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. Gray matter microstructure diffusion-weighted MRI NODDI functional activity task-related fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Colin Hawco verfasserin aut Arash Nazeri verfasserin aut Aristotle N. Voineskos verfasserin aut In NeuroImage Elsevier, 2020 262(2022), Seite 119575- (DE-627)268125503 (DE-600)1471418-8 10959572 nnns volume:262 year:2022 pages:119575- https://doi.org/10.1016/j.neuroimage.2022.119575 kostenfrei https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401 kostenfrei http://www.sciencedirect.com/science/article/pii/S1053811922006905 kostenfrei https://doaj.org/toc/1095-9572 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 262 2022 119575- |
language |
English |
source |
In NeuroImage 262(2022), Seite 119575- volume:262 year:2022 pages:119575- |
sourceStr |
In NeuroImage 262(2022), Seite 119575- volume:262 year:2022 pages:119575- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gray matter microstructure diffusion-weighted MRI NODDI functional activity task-related fMRI Neurosciences. Biological psychiatry. Neuropsychiatry |
isfreeaccess_bool |
true |
container_title |
NeuroImage |
authorswithroles_txt_mv |
Christin Schifani @@aut@@ Colin Hawco @@aut@@ Arash Nazeri @@aut@@ Aristotle N. Voineskos @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
268125503 |
id |
DOAJ035011386 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035011386</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307193728.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2022.119575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035011386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christin Schifani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relationship of neurite architecture to brain activity during task-based fMRI</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gray matter microstructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diffusion-weighted MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NODDI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">task-related fMRI</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Colin Hawco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arash Nazeri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aristotle N. Voineskos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">262(2022), Seite 119575-</subfield><subfield code="w">(DE-627)268125503</subfield><subfield code="w">(DE-600)1471418-8</subfield><subfield code="x">10959572</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:262</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:119575-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2022.119575</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1053811922006905</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1095-9572</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">262</subfield><subfield code="j">2022</subfield><subfield code="h">119575-</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Christin Schifani |
spellingShingle |
Christin Schifani misc RC321-571 misc Gray matter microstructure misc diffusion-weighted MRI misc NODDI misc functional activity misc task-related fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry Relationship of neurite architecture to brain activity during task-based fMRI |
authorStr |
Christin Schifani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268125503 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC321-571 |
illustrated |
Not Illustrated |
issn |
10959572 |
topic_title |
RC321-571 Relationship of neurite architecture to brain activity during task-based fMRI Gray matter microstructure diffusion-weighted MRI NODDI functional activity task-related fMRI |
topic |
misc RC321-571 misc Gray matter microstructure misc diffusion-weighted MRI misc NODDI misc functional activity misc task-related fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_unstemmed |
misc RC321-571 misc Gray matter microstructure misc diffusion-weighted MRI misc NODDI misc functional activity misc task-related fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_browse |
misc RC321-571 misc Gray matter microstructure misc diffusion-weighted MRI misc NODDI misc functional activity misc task-related fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
NeuroImage |
hierarchy_parent_id |
268125503 |
hierarchy_top_title |
NeuroImage |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)268125503 (DE-600)1471418-8 |
title |
Relationship of neurite architecture to brain activity during task-based fMRI |
ctrlnum |
(DE-627)DOAJ035011386 (DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401 |
title_full |
Relationship of neurite architecture to brain activity during task-based fMRI |
author_sort |
Christin Schifani |
journal |
NeuroImage |
journalStr |
NeuroImage |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
119575 |
author_browse |
Christin Schifani Colin Hawco Arash Nazeri Aristotle N. Voineskos |
container_volume |
262 |
class |
RC321-571 |
format_se |
Elektronische Aufsätze |
author-letter |
Christin Schifani |
doi_str_mv |
10.1016/j.neuroimage.2022.119575 |
author2-role |
verfasserin |
title_sort |
relationship of neurite architecture to brain activity during task-based fmri |
callnumber |
RC321-571 |
title_auth |
Relationship of neurite architecture to brain activity during task-based fMRI |
abstract |
Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. |
abstractGer |
Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. |
abstract_unstemmed |
Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Relationship of neurite architecture to brain activity during task-based fMRI |
url |
https://doi.org/10.1016/j.neuroimage.2022.119575 https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401 http://www.sciencedirect.com/science/article/pii/S1053811922006905 https://doaj.org/toc/1095-9572 |
remote_bool |
true |
author2 |
Colin Hawco Arash Nazeri Aristotle N. Voineskos |
author2Str |
Colin Hawco Arash Nazeri Aristotle N. Voineskos |
ppnlink |
268125503 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neuroimage.2022.119575 |
callnumber-a |
RC321-571 |
up_date |
2024-07-04T01:26:37.235Z |
_version_ |
1803609856788135937 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035011386</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307193728.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2022.119575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035011386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ683f173e3eda4ea2b567c42c1e852401</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christin Schifani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relationship of neurite architecture to brain activity during task-based fMRI</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gray matter microstructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diffusion-weighted MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NODDI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">task-related fMRI</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Colin Hawco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arash Nazeri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aristotle N. Voineskos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">262(2022), Seite 119575-</subfield><subfield code="w">(DE-627)268125503</subfield><subfield code="w">(DE-600)1471418-8</subfield><subfield code="x">10959572</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:262</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:119575-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2022.119575</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/683f173e3eda4ea2b567c42c1e852401</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1053811922006905</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1095-9572</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">262</subfield><subfield code="j">2022</subfield><subfield code="h">119575-</subfield></datafield></record></collection>
|
score |
7.401045 |