Analysis of viscoelastic behavior of a filled elastomer under action of different loads
Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many st...
Ausführliche Beschreibung
Autor*in: |
Gligorijević Nikola I. [verfasserIn] Živković Saša Ž. [verfasserIn] Kovačević Nenad V. [verfasserIn] Dimitrijević Nenad P. [verfasserIn] Pavković Bojan M. [verfasserIn] Pavić Miloš [verfasserIn] Rodić Vesna Ž. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; srp |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Hemijska Industrija - Association of Chemical Engineers of Serbia, 2010, 71(2017), 4, Seite 307-317 |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2017 ; number:4 ; pages:307-317 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2298/HEMIND160627042G |
---|
Katalog-ID: |
DOAJ03504537X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ03504537X | ||
003 | DE-627 | ||
005 | 20230307194013.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2298/HEMIND160627042G |2 doi | |
035 | |a (DE-627)DOAJ03504537X | ||
035 | |a (DE-599)DOAJ7f8f205642c54990968deda56d2912a7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a srp | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Gligorijević Nikola I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of viscoelastic behavior of a filled elastomer under action of different loads |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. | ||
650 | 4 | |a composite propellant | |
650 | 4 | |a viscoelasticity | |
650 | 4 | |a time-temperature shift factor | |
650 | 4 | |a ultimate strength | |
650 | 4 | |a damage | |
650 | 4 | |a probability of failure | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Živković Saša Ž. |e verfasserin |4 aut | |
700 | 0 | |a Kovačević Nenad V. |e verfasserin |4 aut | |
700 | 0 | |a Dimitrijević Nenad P. |e verfasserin |4 aut | |
700 | 0 | |a Pavković Bojan M. |e verfasserin |4 aut | |
700 | 0 | |a Pavić Miloš |e verfasserin |4 aut | |
700 | 0 | |a Rodić Vesna Ž. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Hemijska Industrija |d Association of Chemical Engineers of Serbia, 2010 |g 71(2017), 4, Seite 307-317 |w (DE-627)1019885629 |x 22177426 |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:2017 |g number:4 |g pages:307-317 |
856 | 4 | 0 | |u https://doi.org/10.2298/HEMIND160627042G |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7f8f205642c54990968deda56d2912a7 |z kostenfrei |
856 | 4 | 0 | |u http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0367-598X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2217-7426 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 71 |j 2017 |e 4 |h 307-317 |
author_variant |
g n i gni ž s ž žsž k n v knv d n p dnp p b m pbm p m pm r v ž rvž |
---|---|
matchkey_str |
article:22177426:2017----::nlssficeatceairffleeatmrnea |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
TP |
publishDate |
2017 |
allfields |
10.2298/HEMIND160627042G doi (DE-627)DOAJ03504537X (DE-599)DOAJ7f8f205642c54990968deda56d2912a7 DE-627 ger DE-627 rakwb eng srp TP1-1185 Gligorijević Nikola I. verfasserin aut Analysis of viscoelastic behavior of a filled elastomer under action of different loads 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. composite propellant viscoelasticity time-temperature shift factor ultimate strength damage probability of failure Chemical technology Živković Saša Ž. verfasserin aut Kovačević Nenad V. verfasserin aut Dimitrijević Nenad P. verfasserin aut Pavković Bojan M. verfasserin aut Pavić Miloš verfasserin aut Rodić Vesna Ž. verfasserin aut In Hemijska Industrija Association of Chemical Engineers of Serbia, 2010 71(2017), 4, Seite 307-317 (DE-627)1019885629 22177426 nnns volume:71 year:2017 number:4 pages:307-317 https://doi.org/10.2298/HEMIND160627042G kostenfrei https://doaj.org/article/7f8f205642c54990968deda56d2912a7 kostenfrei http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf kostenfrei https://doaj.org/toc/0367-598X Journal toc kostenfrei https://doaj.org/toc/2217-7426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2017 4 307-317 |
spelling |
10.2298/HEMIND160627042G doi (DE-627)DOAJ03504537X (DE-599)DOAJ7f8f205642c54990968deda56d2912a7 DE-627 ger DE-627 rakwb eng srp TP1-1185 Gligorijević Nikola I. verfasserin aut Analysis of viscoelastic behavior of a filled elastomer under action of different loads 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. composite propellant viscoelasticity time-temperature shift factor ultimate strength damage probability of failure Chemical technology Živković Saša Ž. verfasserin aut Kovačević Nenad V. verfasserin aut Dimitrijević Nenad P. verfasserin aut Pavković Bojan M. verfasserin aut Pavić Miloš verfasserin aut Rodić Vesna Ž. verfasserin aut In Hemijska Industrija Association of Chemical Engineers of Serbia, 2010 71(2017), 4, Seite 307-317 (DE-627)1019885629 22177426 nnns volume:71 year:2017 number:4 pages:307-317 https://doi.org/10.2298/HEMIND160627042G kostenfrei https://doaj.org/article/7f8f205642c54990968deda56d2912a7 kostenfrei http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf kostenfrei https://doaj.org/toc/0367-598X Journal toc kostenfrei https://doaj.org/toc/2217-7426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2017 4 307-317 |
allfields_unstemmed |
10.2298/HEMIND160627042G doi (DE-627)DOAJ03504537X (DE-599)DOAJ7f8f205642c54990968deda56d2912a7 DE-627 ger DE-627 rakwb eng srp TP1-1185 Gligorijević Nikola I. verfasserin aut Analysis of viscoelastic behavior of a filled elastomer under action of different loads 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. composite propellant viscoelasticity time-temperature shift factor ultimate strength damage probability of failure Chemical technology Živković Saša Ž. verfasserin aut Kovačević Nenad V. verfasserin aut Dimitrijević Nenad P. verfasserin aut Pavković Bojan M. verfasserin aut Pavić Miloš verfasserin aut Rodić Vesna Ž. verfasserin aut In Hemijska Industrija Association of Chemical Engineers of Serbia, 2010 71(2017), 4, Seite 307-317 (DE-627)1019885629 22177426 nnns volume:71 year:2017 number:4 pages:307-317 https://doi.org/10.2298/HEMIND160627042G kostenfrei https://doaj.org/article/7f8f205642c54990968deda56d2912a7 kostenfrei http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf kostenfrei https://doaj.org/toc/0367-598X Journal toc kostenfrei https://doaj.org/toc/2217-7426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2017 4 307-317 |
allfieldsGer |
10.2298/HEMIND160627042G doi (DE-627)DOAJ03504537X (DE-599)DOAJ7f8f205642c54990968deda56d2912a7 DE-627 ger DE-627 rakwb eng srp TP1-1185 Gligorijević Nikola I. verfasserin aut Analysis of viscoelastic behavior of a filled elastomer under action of different loads 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. composite propellant viscoelasticity time-temperature shift factor ultimate strength damage probability of failure Chemical technology Živković Saša Ž. verfasserin aut Kovačević Nenad V. verfasserin aut Dimitrijević Nenad P. verfasserin aut Pavković Bojan M. verfasserin aut Pavić Miloš verfasserin aut Rodić Vesna Ž. verfasserin aut In Hemijska Industrija Association of Chemical Engineers of Serbia, 2010 71(2017), 4, Seite 307-317 (DE-627)1019885629 22177426 nnns volume:71 year:2017 number:4 pages:307-317 https://doi.org/10.2298/HEMIND160627042G kostenfrei https://doaj.org/article/7f8f205642c54990968deda56d2912a7 kostenfrei http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf kostenfrei https://doaj.org/toc/0367-598X Journal toc kostenfrei https://doaj.org/toc/2217-7426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2017 4 307-317 |
allfieldsSound |
10.2298/HEMIND160627042G doi (DE-627)DOAJ03504537X (DE-599)DOAJ7f8f205642c54990968deda56d2912a7 DE-627 ger DE-627 rakwb eng srp TP1-1185 Gligorijević Nikola I. verfasserin aut Analysis of viscoelastic behavior of a filled elastomer under action of different loads 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. composite propellant viscoelasticity time-temperature shift factor ultimate strength damage probability of failure Chemical technology Živković Saša Ž. verfasserin aut Kovačević Nenad V. verfasserin aut Dimitrijević Nenad P. verfasserin aut Pavković Bojan M. verfasserin aut Pavić Miloš verfasserin aut Rodić Vesna Ž. verfasserin aut In Hemijska Industrija Association of Chemical Engineers of Serbia, 2010 71(2017), 4, Seite 307-317 (DE-627)1019885629 22177426 nnns volume:71 year:2017 number:4 pages:307-317 https://doi.org/10.2298/HEMIND160627042G kostenfrei https://doaj.org/article/7f8f205642c54990968deda56d2912a7 kostenfrei http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf kostenfrei https://doaj.org/toc/0367-598X Journal toc kostenfrei https://doaj.org/toc/2217-7426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2017 4 307-317 |
language |
English |
source |
In Hemijska Industrija 71(2017), 4, Seite 307-317 volume:71 year:2017 number:4 pages:307-317 |
sourceStr |
In Hemijska Industrija 71(2017), 4, Seite 307-317 volume:71 year:2017 number:4 pages:307-317 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
composite propellant viscoelasticity time-temperature shift factor ultimate strength damage probability of failure Chemical technology |
isfreeaccess_bool |
true |
container_title |
Hemijska Industrija |
authorswithroles_txt_mv |
Gligorijević Nikola I. @@aut@@ Živković Saša Ž. @@aut@@ Kovačević Nenad V. @@aut@@ Dimitrijević Nenad P. @@aut@@ Pavković Bojan M. @@aut@@ Pavić Miloš @@aut@@ Rodić Vesna Ž. @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
1019885629 |
id |
DOAJ03504537X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03504537X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307194013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/HEMIND160627042G</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03504537X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f8f205642c54990968deda56d2912a7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">srp</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gligorijević Nikola I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of viscoelastic behavior of a filled elastomer under action of different loads</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite propellant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-temperature shift factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultimate strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability of failure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živković Saša Ž.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kovačević Nenad V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitrijević Nenad P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavković Bojan M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavić Miloš</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rodić Vesna Ž.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Hemijska Industrija</subfield><subfield code="d">Association of Chemical Engineers of Serbia, 2010</subfield><subfield code="g">71(2017), 4, Seite 307-317</subfield><subfield code="w">(DE-627)1019885629</subfield><subfield code="x">22177426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:307-317</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/HEMIND160627042G</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f8f205642c54990968deda56d2912a7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0367-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2217-7426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">307-317</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Gligorijević Nikola I. |
spellingShingle |
Gligorijević Nikola I. misc TP1-1185 misc composite propellant misc viscoelasticity misc time-temperature shift factor misc ultimate strength misc damage misc probability of failure misc Chemical technology Analysis of viscoelastic behavior of a filled elastomer under action of different loads |
authorStr |
Gligorijević Nikola I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1019885629 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22177426 |
topic_title |
TP1-1185 Analysis of viscoelastic behavior of a filled elastomer under action of different loads composite propellant viscoelasticity time-temperature shift factor ultimate strength damage probability of failure |
topic |
misc TP1-1185 misc composite propellant misc viscoelasticity misc time-temperature shift factor misc ultimate strength misc damage misc probability of failure misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc composite propellant misc viscoelasticity misc time-temperature shift factor misc ultimate strength misc damage misc probability of failure misc Chemical technology |
topic_browse |
misc TP1-1185 misc composite propellant misc viscoelasticity misc time-temperature shift factor misc ultimate strength misc damage misc probability of failure misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Hemijska Industrija |
hierarchy_parent_id |
1019885629 |
hierarchy_top_title |
Hemijska Industrija |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1019885629 |
title |
Analysis of viscoelastic behavior of a filled elastomer under action of different loads |
ctrlnum |
(DE-627)DOAJ03504537X (DE-599)DOAJ7f8f205642c54990968deda56d2912a7 |
title_full |
Analysis of viscoelastic behavior of a filled elastomer under action of different loads |
author_sort |
Gligorijević Nikola I. |
journal |
Hemijska Industrija |
journalStr |
Hemijska Industrija |
callnumber-first-code |
T |
lang_code |
eng srp |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
307 |
author_browse |
Gligorijević Nikola I. Živković Saša Ž. Kovačević Nenad V. Dimitrijević Nenad P. Pavković Bojan M. Pavić Miloš Rodić Vesna Ž. |
container_volume |
71 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Gligorijević Nikola I. |
doi_str_mv |
10.2298/HEMIND160627042G |
author2-role |
verfasserin |
title_sort |
analysis of viscoelastic behavior of a filled elastomer under action of different loads |
callnumber |
TP1-1185 |
title_auth |
Analysis of viscoelastic behavior of a filled elastomer under action of different loads |
abstract |
Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. |
abstractGer |
Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. |
abstract_unstemmed |
Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Analysis of viscoelastic behavior of a filled elastomer under action of different loads |
url |
https://doi.org/10.2298/HEMIND160627042G https://doaj.org/article/7f8f205642c54990968deda56d2912a7 http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf https://doaj.org/toc/0367-598X https://doaj.org/toc/2217-7426 |
remote_bool |
true |
author2 |
Živković Saša Ž. Kovačević Nenad V. Dimitrijević Nenad P. Pavković Bojan M. Pavić Miloš Rodić Vesna Ž. |
author2Str |
Živković Saša Ž. Kovačević Nenad V. Dimitrijević Nenad P. Pavković Bojan M. Pavić Miloš Rodić Vesna Ž. |
ppnlink |
1019885629 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2298/HEMIND160627042G |
callnumber-a |
TP1-1185 |
up_date |
2024-07-04T01:33:48.768Z |
_version_ |
1803610309284331520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03504537X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307194013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/HEMIND160627042G</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03504537X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f8f205642c54990968deda56d2912a7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">srp</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gligorijević Nikola I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of viscoelastic behavior of a filled elastomer under action of different loads</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB) composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”), unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite propellant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-temperature shift factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultimate strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability of failure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živković Saša Ž.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kovačević Nenad V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitrijević Nenad P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavković Bojan M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavić Miloš</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rodić Vesna Ž.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Hemijska Industrija</subfield><subfield code="d">Association of Chemical Engineers of Serbia, 2010</subfield><subfield code="g">71(2017), 4, Seite 307-317</subfield><subfield code="w">(DE-627)1019885629</subfield><subfield code="x">22177426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:307-317</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/HEMIND160627042G</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f8f205642c54990968deda56d2912a7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/0367-598X/2017/0367-598X1600042G.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0367-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2217-7426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">307-317</subfield></datafield></record></collection>
|
score |
7.400342 |