Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals
Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity hete...
Ausführliche Beschreibung
Autor*in: |
Like Xu [verfasserIn] Zhifeng Huang [verfasserIn] Qiang Shen [verfasserIn] Fei Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials & Design - Elsevier, 2019, 221(2022), Seite 110929- |
---|---|
Übergeordnetes Werk: |
volume:221 ; year:2022 ; pages:110929- |
Links: |
---|
DOI / URN: |
10.1016/j.matdes.2022.110929 |
---|
Katalog-ID: |
DOAJ035062738 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ035062738 | ||
003 | DE-627 | ||
005 | 20230307194131.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matdes.2022.110929 |2 doi | |
035 | |a (DE-627)DOAJ035062738 | ||
035 | |a (DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Like Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. | ||
650 | 4 | |a Gradient nano-grained structure | |
650 | 4 | |a Plasticity heterogeneity | |
650 | 4 | |a Dislocations | |
650 | 4 | |a Deformation twinning | |
650 | 4 | |a Atomistic simulations | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Zhifeng Huang |e verfasserin |4 aut | |
700 | 0 | |a Qiang Shen |e verfasserin |4 aut | |
700 | 0 | |a Fei Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials & Design |d Elsevier, 2019 |g 221(2022), Seite 110929- |w (DE-627)32052857X |w (DE-600)2015480-X |x 18734197 |7 nnns |
773 | 1 | 8 | |g volume:221 |g year:2022 |g pages:110929- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.matdes.2022.110929 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0264127522005512 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0264-1275 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 221 |j 2022 |h 110929- |
author_variant |
l x lx z h zh q s qs f c fc |
---|---|
matchkey_str |
article:18734197:2022----::tmsismltosflsiiyeeoeetigain |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1016/j.matdes.2022.110929 doi (DE-627)DOAJ035062738 (DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1 DE-627 ger DE-627 rakwb eng TA401-492 Like Xu verfasserin aut Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. Gradient nano-grained structure Plasticity heterogeneity Dislocations Deformation twinning Atomistic simulations Materials of engineering and construction. Mechanics of materials Zhifeng Huang verfasserin aut Qiang Shen verfasserin aut Fei Chen verfasserin aut In Materials & Design Elsevier, 2019 221(2022), Seite 110929- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:221 year:2022 pages:110929- https://doi.org/10.1016/j.matdes.2022.110929 kostenfrei https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127522005512 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 221 2022 110929- |
spelling |
10.1016/j.matdes.2022.110929 doi (DE-627)DOAJ035062738 (DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1 DE-627 ger DE-627 rakwb eng TA401-492 Like Xu verfasserin aut Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. Gradient nano-grained structure Plasticity heterogeneity Dislocations Deformation twinning Atomistic simulations Materials of engineering and construction. Mechanics of materials Zhifeng Huang verfasserin aut Qiang Shen verfasserin aut Fei Chen verfasserin aut In Materials & Design Elsevier, 2019 221(2022), Seite 110929- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:221 year:2022 pages:110929- https://doi.org/10.1016/j.matdes.2022.110929 kostenfrei https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127522005512 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 221 2022 110929- |
allfields_unstemmed |
10.1016/j.matdes.2022.110929 doi (DE-627)DOAJ035062738 (DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1 DE-627 ger DE-627 rakwb eng TA401-492 Like Xu verfasserin aut Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. Gradient nano-grained structure Plasticity heterogeneity Dislocations Deformation twinning Atomistic simulations Materials of engineering and construction. Mechanics of materials Zhifeng Huang verfasserin aut Qiang Shen verfasserin aut Fei Chen verfasserin aut In Materials & Design Elsevier, 2019 221(2022), Seite 110929- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:221 year:2022 pages:110929- https://doi.org/10.1016/j.matdes.2022.110929 kostenfrei https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127522005512 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 221 2022 110929- |
allfieldsGer |
10.1016/j.matdes.2022.110929 doi (DE-627)DOAJ035062738 (DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1 DE-627 ger DE-627 rakwb eng TA401-492 Like Xu verfasserin aut Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. Gradient nano-grained structure Plasticity heterogeneity Dislocations Deformation twinning Atomistic simulations Materials of engineering and construction. Mechanics of materials Zhifeng Huang verfasserin aut Qiang Shen verfasserin aut Fei Chen verfasserin aut In Materials & Design Elsevier, 2019 221(2022), Seite 110929- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:221 year:2022 pages:110929- https://doi.org/10.1016/j.matdes.2022.110929 kostenfrei https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127522005512 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 221 2022 110929- |
allfieldsSound |
10.1016/j.matdes.2022.110929 doi (DE-627)DOAJ035062738 (DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1 DE-627 ger DE-627 rakwb eng TA401-492 Like Xu verfasserin aut Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. Gradient nano-grained structure Plasticity heterogeneity Dislocations Deformation twinning Atomistic simulations Materials of engineering and construction. Mechanics of materials Zhifeng Huang verfasserin aut Qiang Shen verfasserin aut Fei Chen verfasserin aut In Materials & Design Elsevier, 2019 221(2022), Seite 110929- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:221 year:2022 pages:110929- https://doi.org/10.1016/j.matdes.2022.110929 kostenfrei https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127522005512 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 221 2022 110929- |
language |
English |
source |
In Materials & Design 221(2022), Seite 110929- volume:221 year:2022 pages:110929- |
sourceStr |
In Materials & Design 221(2022), Seite 110929- volume:221 year:2022 pages:110929- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gradient nano-grained structure Plasticity heterogeneity Dislocations Deformation twinning Atomistic simulations Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Materials & Design |
authorswithroles_txt_mv |
Like Xu @@aut@@ Zhifeng Huang @@aut@@ Qiang Shen @@aut@@ Fei Chen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
32052857X |
id |
DOAJ035062738 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035062738</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307194131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2022.110929</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035062738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Like Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient nano-grained structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasticity heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation twinning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomistic simulations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhifeng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">221(2022), Seite 110929-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:110929-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2022.110929</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127522005512</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield><subfield code="j">2022</subfield><subfield code="h">110929-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Like Xu |
spellingShingle |
Like Xu misc TA401-492 misc Gradient nano-grained structure misc Plasticity heterogeneity misc Dislocations misc Deformation twinning misc Atomistic simulations misc Materials of engineering and construction. Mechanics of materials Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals |
authorStr |
Like Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32052857X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
18734197 |
topic_title |
TA401-492 Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals Gradient nano-grained structure Plasticity heterogeneity Dislocations Deformation twinning Atomistic simulations |
topic |
misc TA401-492 misc Gradient nano-grained structure misc Plasticity heterogeneity misc Dislocations misc Deformation twinning misc Atomistic simulations misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Gradient nano-grained structure misc Plasticity heterogeneity misc Dislocations misc Deformation twinning misc Atomistic simulations misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Gradient nano-grained structure misc Plasticity heterogeneity misc Dislocations misc Deformation twinning misc Atomistic simulations misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials & Design |
hierarchy_parent_id |
32052857X |
hierarchy_top_title |
Materials & Design |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)32052857X (DE-600)2015480-X |
title |
Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals |
ctrlnum |
(DE-627)DOAJ035062738 (DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1 |
title_full |
Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals |
author_sort |
Like Xu |
journal |
Materials & Design |
journalStr |
Materials & Design |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
110929 |
author_browse |
Like Xu Zhifeng Huang Qiang Shen Fei Chen |
container_volume |
221 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Like Xu |
doi_str_mv |
10.1016/j.matdes.2022.110929 |
author2-role |
verfasserin |
title_sort |
atomistic simulations of plasticity heterogeneity in gradient nano-grained fcc metals |
callnumber |
TA401-492 |
title_auth |
Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals |
abstract |
Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. |
abstractGer |
Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. |
abstract_unstemmed |
Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals |
url |
https://doi.org/10.1016/j.matdes.2022.110929 https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1 http://www.sciencedirect.com/science/article/pii/S0264127522005512 https://doaj.org/toc/0264-1275 |
remote_bool |
true |
author2 |
Zhifeng Huang Qiang Shen Fei Chen |
author2Str |
Zhifeng Huang Qiang Shen Fei Chen |
ppnlink |
32052857X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matdes.2022.110929 |
callnumber-a |
TA401-492 |
up_date |
2024-07-04T01:37:38.965Z |
_version_ |
1803610550662332416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035062738</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307194131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2022.110929</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035062738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5370ed8daf654725bbacdbd4b80748d1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Like Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gradient nano-grained (GNG) metals are an emerging class of heterogeneous structured materials with extraordinary mechanistic performances and unnatural plasticity mechanisms, which are unachievable in traditional homogeneous nanocrystalline metals. Here, the metal-type dependence of plasticity heterogeneity in three different GNG structured face-centered cubic metals (Cu, Al, and Ni) was studied by large-scale molecular dynamic simulation, from the plasticity perspectives of dislocation, deformation twinning, and grain boundary. The dislocation and deformation twinning-based plasticity show clear metal-type dependence in GNG structure of different selected metals. For grain boundary activities, GNG Cu, Al, and Ni are equivalent in the overall grain boundary sliding and micro-cracking process, but GNG Ni shows markedly higher grain boundary-free volume and stress due to the grain size gradient-induced twinning process. We find that GNG Al shows the weakest plasticity-induced strengthening due to its weak strain hardening and ununiform plasticity distribution, while GNG Ni exhibits prominent plasticity-induced strengthening because of the obvious extra strain hardening process. Besides, we further discuss the reasonable gradient grain size design of GNG structure, considering the critical grain size of the Hall-Petch and inverse Hall-Petch relationship, which will demonstrate a more rational plasticity heterogeneity and internal atomic stress distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient nano-grained structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasticity heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation twinning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomistic simulations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhifeng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">221(2022), Seite 110929-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:110929-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2022.110929</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5370ed8daf654725bbacdbd4b80748d1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127522005512</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield><subfield code="j">2022</subfield><subfield code="h">110929-</subfield></datafield></record></collection>
|
score |
7.4012613 |