Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment
Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory...
Ausführliche Beschreibung
Autor*in: |
Kaiping Wang [verfasserIn] Mingzhu Song [verfasserIn] Meng Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 13(2021), 12, p 6807 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:12, p 6807 |
Links: |
---|
DOI / URN: |
10.3390/su13126807 |
---|
Katalog-ID: |
DOAJ03532967X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ03532967X | ||
003 | DE-627 | ||
005 | 20240412174139.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su13126807 |2 doi | |
035 | |a (DE-627)DOAJ03532967X | ||
035 | |a (DE-599)DOAJ2c99b47382e9421383bcd49706527afc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Kaiping Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. | ||
650 | 4 | |a multi-UAV | |
650 | 4 | |a cooperative trajectory planning | |
650 | 4 | |a conflict avoidance | |
650 | 4 | |a holding time | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Mingzhu Song |e verfasserin |4 aut | |
700 | 0 | |a Meng Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 13(2021), 12, p 6807 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:12, p 6807 |
856 | 4 | 0 | |u https://doi.org/10.3390/su13126807 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2c99b47382e9421383bcd49706527afc |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/13/12/6807 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 12, p 6807 |
author_variant |
k w kw m s ms m l ml |
---|---|
matchkey_str |
article:20711050:2021----::oprtvmliacnlcaodnelnigncm |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TD |
publishDate |
2021 |
allfields |
10.3390/su13126807 doi (DE-627)DOAJ03532967X (DE-599)DOAJ2c99b47382e9421383bcd49706527afc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Kaiping Wang verfasserin aut Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. multi-UAV cooperative trajectory planning conflict avoidance holding time Environmental effects of industries and plants Renewable energy sources Environmental sciences Mingzhu Song verfasserin aut Meng Li verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 12, p 6807 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:12, p 6807 https://doi.org/10.3390/su13126807 kostenfrei https://doaj.org/article/2c99b47382e9421383bcd49706527afc kostenfrei https://www.mdpi.com/2071-1050/13/12/6807 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 6807 |
spelling |
10.3390/su13126807 doi (DE-627)DOAJ03532967X (DE-599)DOAJ2c99b47382e9421383bcd49706527afc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Kaiping Wang verfasserin aut Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. multi-UAV cooperative trajectory planning conflict avoidance holding time Environmental effects of industries and plants Renewable energy sources Environmental sciences Mingzhu Song verfasserin aut Meng Li verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 12, p 6807 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:12, p 6807 https://doi.org/10.3390/su13126807 kostenfrei https://doaj.org/article/2c99b47382e9421383bcd49706527afc kostenfrei https://www.mdpi.com/2071-1050/13/12/6807 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 6807 |
allfields_unstemmed |
10.3390/su13126807 doi (DE-627)DOAJ03532967X (DE-599)DOAJ2c99b47382e9421383bcd49706527afc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Kaiping Wang verfasserin aut Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. multi-UAV cooperative trajectory planning conflict avoidance holding time Environmental effects of industries and plants Renewable energy sources Environmental sciences Mingzhu Song verfasserin aut Meng Li verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 12, p 6807 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:12, p 6807 https://doi.org/10.3390/su13126807 kostenfrei https://doaj.org/article/2c99b47382e9421383bcd49706527afc kostenfrei https://www.mdpi.com/2071-1050/13/12/6807 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 6807 |
allfieldsGer |
10.3390/su13126807 doi (DE-627)DOAJ03532967X (DE-599)DOAJ2c99b47382e9421383bcd49706527afc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Kaiping Wang verfasserin aut Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. multi-UAV cooperative trajectory planning conflict avoidance holding time Environmental effects of industries and plants Renewable energy sources Environmental sciences Mingzhu Song verfasserin aut Meng Li verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 12, p 6807 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:12, p 6807 https://doi.org/10.3390/su13126807 kostenfrei https://doaj.org/article/2c99b47382e9421383bcd49706527afc kostenfrei https://www.mdpi.com/2071-1050/13/12/6807 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 6807 |
allfieldsSound |
10.3390/su13126807 doi (DE-627)DOAJ03532967X (DE-599)DOAJ2c99b47382e9421383bcd49706527afc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Kaiping Wang verfasserin aut Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. multi-UAV cooperative trajectory planning conflict avoidance holding time Environmental effects of industries and plants Renewable energy sources Environmental sciences Mingzhu Song verfasserin aut Meng Li verfasserin aut In Sustainability MDPI AG, 2009 13(2021), 12, p 6807 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:13 year:2021 number:12, p 6807 https://doi.org/10.3390/su13126807 kostenfrei https://doaj.org/article/2c99b47382e9421383bcd49706527afc kostenfrei https://www.mdpi.com/2071-1050/13/12/6807 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 12, p 6807 |
language |
English |
source |
In Sustainability 13(2021), 12, p 6807 volume:13 year:2021 number:12, p 6807 |
sourceStr |
In Sustainability 13(2021), 12, p 6807 volume:13 year:2021 number:12, p 6807 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multi-UAV cooperative trajectory planning conflict avoidance holding time Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Kaiping Wang @@aut@@ Mingzhu Song @@aut@@ Meng Li @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ03532967X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03532967X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su13126807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03532967X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2c99b47382e9421383bcd49706527afc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kaiping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-UAV</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative trajectory planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conflict avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">holding time</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingzhu Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 12, p 6807</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 6807</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su13126807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2c99b47382e9421383bcd49706527afc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/13/12/6807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 6807</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kaiping Wang |
spellingShingle |
Kaiping Wang misc TD194-195 misc TJ807-830 misc GE1-350 misc multi-UAV misc cooperative trajectory planning misc conflict avoidance misc holding time misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment |
authorStr |
Kaiping Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment multi-UAV cooperative trajectory planning conflict avoidance holding time |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc multi-UAV misc cooperative trajectory planning misc conflict avoidance misc holding time misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc multi-UAV misc cooperative trajectory planning misc conflict avoidance misc holding time misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc multi-UAV misc cooperative trajectory planning misc conflict avoidance misc holding time misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment |
ctrlnum |
(DE-627)DOAJ03532967X (DE-599)DOAJ2c99b47382e9421383bcd49706527afc |
title_full |
Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment |
author_sort |
Kaiping Wang |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Kaiping Wang Mingzhu Song Meng Li |
container_volume |
13 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Kaiping Wang |
doi_str_mv |
10.3390/su13126807 |
author2-role |
verfasserin |
title_sort |
cooperative multi-uav conflict avoidance planning in a complex urban environment |
callnumber |
TD194-195 |
title_auth |
Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment |
abstract |
Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. |
abstractGer |
Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. |
abstract_unstemmed |
Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 6807 |
title_short |
Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment |
url |
https://doi.org/10.3390/su13126807 https://doaj.org/article/2c99b47382e9421383bcd49706527afc https://www.mdpi.com/2071-1050/13/12/6807 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Mingzhu Song Meng Li |
author2Str |
Mingzhu Song Meng Li |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su13126807 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T14:19:10.844Z |
_version_ |
1803567865107841024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03532967X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su13126807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03532967X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2c99b47382e9421383bcd49706527afc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kaiping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Trajectory planning is of great value and yet challenging for multirotor unmanned aerial vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of handling cluttered obstacles. The problem further complicates itself in the context of autonomous multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem, and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple traveling salesman problem, aiming at generating trajectories based on heuristic framework for multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties. The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph method. Numerical studies are conducted in both a 1 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< virtual city and 12 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mrow<<mi<km</mi<</mrow<<mn<2</mn<</msup<</mrow<</semantics<</math<</inline-formula< real city with a set of tasks and obstacles settings. The results show that the proposed model is capable of planning trajectories for multi-UAV from the system-level perspective based on the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-UAV</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative trajectory planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conflict avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">holding time</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingzhu Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 12, p 6807</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 6807</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su13126807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2c99b47382e9421383bcd49706527afc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/13/12/6807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 6807</subfield></datafield></record></collection>
|
score |
7.40149 |