Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms
Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the p...
Ausführliche Beschreibung
Autor*in: |
Sami Baraket [verfasserIn] Souhail Chebbi [verfasserIn] Nejmeddine Chorfi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Boundary Value Problems - SpringerOpen, 2006, (2019), 1, Seite 25 |
---|---|
Übergeordnetes Werk: |
year:2019 ; number:1 ; pages:25 |
Links: |
---|
DOI / URN: |
10.1186/s13661-019-1244-7 |
---|
Katalog-ID: |
DOAJ035529385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ035529385 | ||
003 | DE-627 | ||
005 | 20230307205112.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13661-019-1244-7 |2 doi | |
035 | |a (DE-627)DOAJ035529385 | ||
035 | |a (DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Sami Baraket |e verfasserin |4 aut | |
245 | 1 | 0 | |a Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. | ||
650 | 4 | |a Biharmonic operator | |
650 | 4 | |a Nonlinear operator | |
650 | 4 | |a Singular limits | |
650 | 4 | |a Green’s function | |
650 | 4 | |a Nonlinear domain decomposition method | |
653 | 0 | |a Analysis | |
700 | 0 | |a Souhail Chebbi |e verfasserin |4 aut | |
700 | 0 | |a Nejmeddine Chorfi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Boundary Value Problems |d SpringerOpen, 2006 |g (2019), 1, Seite 25 |w (DE-627)48672557X |w (DE-600)2187777-4 |x 16872770 |7 nnns |
773 | 1 | 8 | |g year:2019 |g number:1 |g pages:25 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13661-019-1244-7 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13661-019-1244-7 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-2770 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2019 |e 1 |h 25 |
author_variant |
s b sb s c sc n c nc |
---|---|
matchkey_str |
article:16872770:2019----::osrcinfiglriisoatogyetrefudmninlairrbewtepnnilyoi |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QA |
publishDate |
2019 |
allfields |
10.1186/s13661-019-1244-7 doi (DE-627)DOAJ035529385 (DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4 DE-627 ger DE-627 rakwb eng QA299.6-433 Sami Baraket verfasserin aut Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. Biharmonic operator Nonlinear operator Singular limits Green’s function Nonlinear domain decomposition method Analysis Souhail Chebbi verfasserin aut Nejmeddine Chorfi verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2019), 1, Seite 25 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2019 number:1 pages:25 https://doi.org/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4 kostenfrei http://link.springer.com/article/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 1 25 |
spelling |
10.1186/s13661-019-1244-7 doi (DE-627)DOAJ035529385 (DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4 DE-627 ger DE-627 rakwb eng QA299.6-433 Sami Baraket verfasserin aut Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. Biharmonic operator Nonlinear operator Singular limits Green’s function Nonlinear domain decomposition method Analysis Souhail Chebbi verfasserin aut Nejmeddine Chorfi verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2019), 1, Seite 25 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2019 number:1 pages:25 https://doi.org/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4 kostenfrei http://link.springer.com/article/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 1 25 |
allfields_unstemmed |
10.1186/s13661-019-1244-7 doi (DE-627)DOAJ035529385 (DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4 DE-627 ger DE-627 rakwb eng QA299.6-433 Sami Baraket verfasserin aut Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. Biharmonic operator Nonlinear operator Singular limits Green’s function Nonlinear domain decomposition method Analysis Souhail Chebbi verfasserin aut Nejmeddine Chorfi verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2019), 1, Seite 25 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2019 number:1 pages:25 https://doi.org/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4 kostenfrei http://link.springer.com/article/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 1 25 |
allfieldsGer |
10.1186/s13661-019-1244-7 doi (DE-627)DOAJ035529385 (DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4 DE-627 ger DE-627 rakwb eng QA299.6-433 Sami Baraket verfasserin aut Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. Biharmonic operator Nonlinear operator Singular limits Green’s function Nonlinear domain decomposition method Analysis Souhail Chebbi verfasserin aut Nejmeddine Chorfi verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2019), 1, Seite 25 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2019 number:1 pages:25 https://doi.org/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4 kostenfrei http://link.springer.com/article/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 1 25 |
allfieldsSound |
10.1186/s13661-019-1244-7 doi (DE-627)DOAJ035529385 (DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4 DE-627 ger DE-627 rakwb eng QA299.6-433 Sami Baraket verfasserin aut Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. Biharmonic operator Nonlinear operator Singular limits Green’s function Nonlinear domain decomposition method Analysis Souhail Chebbi verfasserin aut Nejmeddine Chorfi verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2019), 1, Seite 25 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2019 number:1 pages:25 https://doi.org/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4 kostenfrei http://link.springer.com/article/10.1186/s13661-019-1244-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 1 25 |
language |
English |
source |
In Boundary Value Problems (2019), 1, Seite 25 year:2019 number:1 pages:25 |
sourceStr |
In Boundary Value Problems (2019), 1, Seite 25 year:2019 number:1 pages:25 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biharmonic operator Nonlinear operator Singular limits Green’s function Nonlinear domain decomposition method Analysis |
isfreeaccess_bool |
true |
container_title |
Boundary Value Problems |
authorswithroles_txt_mv |
Sami Baraket @@aut@@ Souhail Chebbi @@aut@@ Nejmeddine Chorfi @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
48672557X |
id |
DOAJ035529385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035529385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307205112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-019-1244-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035529385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sami Baraket</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biharmonic operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular limits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green’s function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear domain decomposition method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Souhail Chebbi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nejmeddine Chorfi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2019), 1, Seite 25</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:25</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-019-1244-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13661-019-1244-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">25</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Sami Baraket |
spellingShingle |
Sami Baraket misc QA299.6-433 misc Biharmonic operator misc Nonlinear operator misc Singular limits misc Green’s function misc Nonlinear domain decomposition method misc Analysis Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms |
authorStr |
Sami Baraket |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)48672557X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
16872770 |
topic_title |
QA299.6-433 Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms Biharmonic operator Nonlinear operator Singular limits Green’s function Nonlinear domain decomposition method |
topic |
misc QA299.6-433 misc Biharmonic operator misc Nonlinear operator misc Singular limits misc Green’s function misc Nonlinear domain decomposition method misc Analysis |
topic_unstemmed |
misc QA299.6-433 misc Biharmonic operator misc Nonlinear operator misc Singular limits misc Green’s function misc Nonlinear domain decomposition method misc Analysis |
topic_browse |
misc QA299.6-433 misc Biharmonic operator misc Nonlinear operator misc Singular limits misc Green’s function misc Nonlinear domain decomposition method misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Boundary Value Problems |
hierarchy_parent_id |
48672557X |
hierarchy_top_title |
Boundary Value Problems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)48672557X (DE-600)2187777-4 |
title |
Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms |
ctrlnum |
(DE-627)DOAJ035529385 (DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4 |
title_full |
Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms |
author_sort |
Sami Baraket |
journal |
Boundary Value Problems |
journalStr |
Boundary Value Problems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
25 |
author_browse |
Sami Baraket Souhail Chebbi Nejmeddine Chorfi |
class |
QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Sami Baraket |
doi_str_mv |
10.1186/s13661-019-1244-7 |
author2-role |
verfasserin |
title_sort |
construction of singular limits for a strongly perturbed four-dimensional navier problem with exponentially dominated nonlinearity and nonlinear terms |
callnumber |
QA299.6-433 |
title_auth |
Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms |
abstract |
Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. |
abstractGer |
Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. |
abstract_unstemmed |
Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms |
url |
https://doi.org/10.1186/s13661-019-1244-7 https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4 http://link.springer.com/article/10.1186/s13661-019-1244-7 https://doaj.org/toc/1687-2770 |
remote_bool |
true |
author2 |
Souhail Chebbi Nejmeddine Chorfi |
author2Str |
Souhail Chebbi Nejmeddine Chorfi |
ppnlink |
48672557X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13661-019-1244-7 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-03T15:30:36.581Z |
_version_ |
1803572359025655808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035529385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307205112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-019-1244-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035529385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39899e0787ae4eca9c39f66ad05a70c4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sami Baraket</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given a bounded open regular set Ω∈R4,x1,x2,…,xm∈Ω,λ,ρ<0,γ∈(0,1) $\varOmega \in \mathbb{R}^{4}, x_{1}, x_{2}, \ldots, x_{m} \in \varOmega, \lambda, \rho < 0, \gamma \in (0,1)$, and Qλ ${\mathscr{Q}}_{\lambda }$ some nonlinear operator (which will be defined later), we prove that the problem Δ2u+Qλ(u)=ρ4(eu+eγu) $$ \Delta ^{2}u +{\mathscr{Q}}_{\lambda }(u)= \rho ^{4} \bigl(e^{u} + e^{\gamma u}\bigr) $$ has a positive weak solution in Ω with u=Δu=0 $u = \Delta u=0$ on ∂Ω, which is singular at each xi $x_{i}$ as the parameters λ and ρ tend to 0.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biharmonic operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular limits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green’s function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear domain decomposition method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Souhail Chebbi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nejmeddine Chorfi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2019), 1, Seite 25</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:25</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-019-1244-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39899e0787ae4eca9c39f66ad05a70c4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13661-019-1244-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">25</subfield></datafield></record></collection>
|
score |
7.4005966 |