Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms
Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of usi...
Ausführliche Beschreibung
Autor*in: |
Mustafa Abed [verfasserIn] Monzur Alam Imteaz [verfasserIn] Ali Najah Ahmed [verfasserIn] Yuk Feng Huang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 29 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:29 |
Links: |
---|
DOI / URN: |
10.1038/s41598-022-17263-3 |
---|
Katalog-ID: |
DOAJ035617209 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ035617209 | ||
003 | DE-627 | ||
005 | 20230503062139.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-022-17263-3 |2 doi | |
035 | |a (DE-627)DOAJ035617209 | ||
035 | |a (DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Mustafa Abed |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Monzur Alam Imteaz |e verfasserin |4 aut | |
700 | 0 | |a Ali Najah Ahmed |e verfasserin |4 aut | |
700 | 0 | |a Yuk Feng Huang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 29 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:29 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-17263-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-17263-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 29 |
author_variant |
m a ma m a i mai a n a ana y f h yfh |
---|---|
matchkey_str |
article:20452322:2022----::oelnmnhyaeaoaintlsnrnofrsade |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-022-17263-3 doi (DE-627)DOAJ035617209 (DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b DE-627 ger DE-627 rakwb eng Mustafa Abed verfasserin aut Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. Medicine R Science Q Monzur Alam Imteaz verfasserin aut Ali Najah Ahmed verfasserin aut Yuk Feng Huang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 29 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:29 https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b kostenfrei https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 29 |
spelling |
10.1038/s41598-022-17263-3 doi (DE-627)DOAJ035617209 (DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b DE-627 ger DE-627 rakwb eng Mustafa Abed verfasserin aut Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. Medicine R Science Q Monzur Alam Imteaz verfasserin aut Ali Najah Ahmed verfasserin aut Yuk Feng Huang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 29 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:29 https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b kostenfrei https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 29 |
allfields_unstemmed |
10.1038/s41598-022-17263-3 doi (DE-627)DOAJ035617209 (DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b DE-627 ger DE-627 rakwb eng Mustafa Abed verfasserin aut Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. Medicine R Science Q Monzur Alam Imteaz verfasserin aut Ali Najah Ahmed verfasserin aut Yuk Feng Huang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 29 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:29 https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b kostenfrei https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 29 |
allfieldsGer |
10.1038/s41598-022-17263-3 doi (DE-627)DOAJ035617209 (DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b DE-627 ger DE-627 rakwb eng Mustafa Abed verfasserin aut Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. Medicine R Science Q Monzur Alam Imteaz verfasserin aut Ali Najah Ahmed verfasserin aut Yuk Feng Huang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 29 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:29 https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b kostenfrei https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 29 |
allfieldsSound |
10.1038/s41598-022-17263-3 doi (DE-627)DOAJ035617209 (DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b DE-627 ger DE-627 rakwb eng Mustafa Abed verfasserin aut Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. Medicine R Science Q Monzur Alam Imteaz verfasserin aut Ali Najah Ahmed verfasserin aut Yuk Feng Huang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 29 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:29 https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b kostenfrei https://doi.org/10.1038/s41598-022-17263-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 29 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 29 volume:12 year:2022 number:1 pages:29 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 29 volume:12 year:2022 number:1 pages:29 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Mustafa Abed @@aut@@ Monzur Alam Imteaz @@aut@@ Ali Najah Ahmed @@aut@@ Yuk Feng Huang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ035617209 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035617209</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-17263-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035617209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mustafa Abed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monzur Alam Imteaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Najah Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuk Feng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 29</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:29</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-17263-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-17263-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">29</subfield></datafield></record></collection>
|
author |
Mustafa Abed |
spellingShingle |
Mustafa Abed misc Medicine misc R misc Science misc Q Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms |
authorStr |
Mustafa Abed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms |
ctrlnum |
(DE-627)DOAJ035617209 (DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b |
title_full |
Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms |
author_sort |
Mustafa Abed |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
29 |
author_browse |
Mustafa Abed Monzur Alam Imteaz Ali Najah Ahmed Yuk Feng Huang |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Mustafa Abed |
doi_str_mv |
10.1038/s41598-022-17263-3 |
author2-role |
verfasserin |
title_sort |
modelling monthly pan evaporation utilising random forest and deep learning algorithms |
title_auth |
Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms |
abstract |
Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. |
abstractGer |
Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. |
abstract_unstemmed |
Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms |
url |
https://doi.org/10.1038/s41598-022-17263-3 https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Monzur Alam Imteaz Ali Najah Ahmed Yuk Feng Huang |
author2Str |
Monzur Alam Imteaz Ali Najah Ahmed Yuk Feng Huang |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-022-17263-3 |
up_date |
2024-07-03T16:01:25.994Z |
_version_ |
1803574298276790272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035617209</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-17263-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035617209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdbfb6f4e7aca42c2b0bb8fb1e8c8e73b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mustafa Abed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000–2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation’s findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monzur Alam Imteaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Najah Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuk Feng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 29</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:29</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-17263-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dbfb6f4e7aca42c2b0bb8fb1e8c8e73b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-17263-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">29</subfield></datafield></record></collection>
|
score |
7.401374 |