Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice
Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with you...
Ausführliche Beschreibung
Autor*in: |
Se-Ran Jun [verfasserIn] Amrita Cheema [verfasserIn] Chhanda Bose [verfasserIn] Marjan Boerma [verfasserIn] Philip T. Palade [verfasserIn] Eugenia Carvalho [verfasserIn] Sanjay Awasthi [verfasserIn] Sharda P. Singh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Microorganisms - MDPI AG, 2013, 8(2020), 10, p 1500 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:10, p 1500 |
Links: |
---|
DOI / URN: |
10.3390/microorganisms8101500 |
---|
Katalog-ID: |
DOAJ035656395 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ035656395 | ||
003 | DE-627 | ||
005 | 20240414083658.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/microorganisms8101500 |2 doi | |
035 | |a (DE-627)DOAJ035656395 | ||
035 | |a (DE-599)DOAJ05088a60266f4873bccc338f353f7b0b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Se-Ran Jun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. | ||
650 | 4 | |a aging | |
650 | 4 | |a sulforaphane | |
650 | 4 | |a gut microbiome | |
650 | 4 | |a metabolome | |
650 | 4 | |a biomarkers | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Amrita Cheema |e verfasserin |4 aut | |
700 | 0 | |a Chhanda Bose |e verfasserin |4 aut | |
700 | 0 | |a Marjan Boerma |e verfasserin |4 aut | |
700 | 0 | |a Philip T. Palade |e verfasserin |4 aut | |
700 | 0 | |a Eugenia Carvalho |e verfasserin |4 aut | |
700 | 0 | |a Sanjay Awasthi |e verfasserin |4 aut | |
700 | 0 | |a Sharda P. Singh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Microorganisms |d MDPI AG, 2013 |g 8(2020), 10, p 1500 |w (DE-627)750370696 |w (DE-600)2720891-6 |x 20762607 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:10, p 1500 |
856 | 4 | 0 | |u https://doi.org/10.3390/microorganisms8101500 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/05088a60266f4873bccc338f353f7b0b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-2607/8/10/1500 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-2607 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 10, p 1500 |
author_variant |
s r j srj a c ac c b cb m b mb p t p ptp e c ec s a sa s p s sps |
---|---|
matchkey_str |
article:20762607:2020----::utoiaayirvasifrnefcsfufrpaenhmcoimadeao |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QH |
publishDate |
2020 |
allfields |
10.3390/microorganisms8101500 doi (DE-627)DOAJ035656395 (DE-599)DOAJ05088a60266f4873bccc338f353f7b0b DE-627 ger DE-627 rakwb eng QH301-705.5 Se-Ran Jun verfasserin aut Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. aging sulforaphane gut microbiome metabolome biomarkers Biology (General) Amrita Cheema verfasserin aut Chhanda Bose verfasserin aut Marjan Boerma verfasserin aut Philip T. Palade verfasserin aut Eugenia Carvalho verfasserin aut Sanjay Awasthi verfasserin aut Sharda P. Singh verfasserin aut In Microorganisms MDPI AG, 2013 8(2020), 10, p 1500 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:8 year:2020 number:10, p 1500 https://doi.org/10.3390/microorganisms8101500 kostenfrei https://doaj.org/article/05088a60266f4873bccc338f353f7b0b kostenfrei https://www.mdpi.com/2076-2607/8/10/1500 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 10, p 1500 |
spelling |
10.3390/microorganisms8101500 doi (DE-627)DOAJ035656395 (DE-599)DOAJ05088a60266f4873bccc338f353f7b0b DE-627 ger DE-627 rakwb eng QH301-705.5 Se-Ran Jun verfasserin aut Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. aging sulforaphane gut microbiome metabolome biomarkers Biology (General) Amrita Cheema verfasserin aut Chhanda Bose verfasserin aut Marjan Boerma verfasserin aut Philip T. Palade verfasserin aut Eugenia Carvalho verfasserin aut Sanjay Awasthi verfasserin aut Sharda P. Singh verfasserin aut In Microorganisms MDPI AG, 2013 8(2020), 10, p 1500 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:8 year:2020 number:10, p 1500 https://doi.org/10.3390/microorganisms8101500 kostenfrei https://doaj.org/article/05088a60266f4873bccc338f353f7b0b kostenfrei https://www.mdpi.com/2076-2607/8/10/1500 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 10, p 1500 |
allfields_unstemmed |
10.3390/microorganisms8101500 doi (DE-627)DOAJ035656395 (DE-599)DOAJ05088a60266f4873bccc338f353f7b0b DE-627 ger DE-627 rakwb eng QH301-705.5 Se-Ran Jun verfasserin aut Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. aging sulforaphane gut microbiome metabolome biomarkers Biology (General) Amrita Cheema verfasserin aut Chhanda Bose verfasserin aut Marjan Boerma verfasserin aut Philip T. Palade verfasserin aut Eugenia Carvalho verfasserin aut Sanjay Awasthi verfasserin aut Sharda P. Singh verfasserin aut In Microorganisms MDPI AG, 2013 8(2020), 10, p 1500 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:8 year:2020 number:10, p 1500 https://doi.org/10.3390/microorganisms8101500 kostenfrei https://doaj.org/article/05088a60266f4873bccc338f353f7b0b kostenfrei https://www.mdpi.com/2076-2607/8/10/1500 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 10, p 1500 |
allfieldsGer |
10.3390/microorganisms8101500 doi (DE-627)DOAJ035656395 (DE-599)DOAJ05088a60266f4873bccc338f353f7b0b DE-627 ger DE-627 rakwb eng QH301-705.5 Se-Ran Jun verfasserin aut Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. aging sulforaphane gut microbiome metabolome biomarkers Biology (General) Amrita Cheema verfasserin aut Chhanda Bose verfasserin aut Marjan Boerma verfasserin aut Philip T. Palade verfasserin aut Eugenia Carvalho verfasserin aut Sanjay Awasthi verfasserin aut Sharda P. Singh verfasserin aut In Microorganisms MDPI AG, 2013 8(2020), 10, p 1500 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:8 year:2020 number:10, p 1500 https://doi.org/10.3390/microorganisms8101500 kostenfrei https://doaj.org/article/05088a60266f4873bccc338f353f7b0b kostenfrei https://www.mdpi.com/2076-2607/8/10/1500 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 10, p 1500 |
allfieldsSound |
10.3390/microorganisms8101500 doi (DE-627)DOAJ035656395 (DE-599)DOAJ05088a60266f4873bccc338f353f7b0b DE-627 ger DE-627 rakwb eng QH301-705.5 Se-Ran Jun verfasserin aut Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. aging sulforaphane gut microbiome metabolome biomarkers Biology (General) Amrita Cheema verfasserin aut Chhanda Bose verfasserin aut Marjan Boerma verfasserin aut Philip T. Palade verfasserin aut Eugenia Carvalho verfasserin aut Sanjay Awasthi verfasserin aut Sharda P. Singh verfasserin aut In Microorganisms MDPI AG, 2013 8(2020), 10, p 1500 (DE-627)750370696 (DE-600)2720891-6 20762607 nnns volume:8 year:2020 number:10, p 1500 https://doi.org/10.3390/microorganisms8101500 kostenfrei https://doaj.org/article/05088a60266f4873bccc338f353f7b0b kostenfrei https://www.mdpi.com/2076-2607/8/10/1500 kostenfrei https://doaj.org/toc/2076-2607 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 10, p 1500 |
language |
English |
source |
In Microorganisms 8(2020), 10, p 1500 volume:8 year:2020 number:10, p 1500 |
sourceStr |
In Microorganisms 8(2020), 10, p 1500 volume:8 year:2020 number:10, p 1500 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
aging sulforaphane gut microbiome metabolome biomarkers Biology (General) |
isfreeaccess_bool |
true |
container_title |
Microorganisms |
authorswithroles_txt_mv |
Se-Ran Jun @@aut@@ Amrita Cheema @@aut@@ Chhanda Bose @@aut@@ Marjan Boerma @@aut@@ Philip T. Palade @@aut@@ Eugenia Carvalho @@aut@@ Sanjay Awasthi @@aut@@ Sharda P. Singh @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
750370696 |
id |
DOAJ035656395 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035656395</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414083658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/microorganisms8101500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035656395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05088a60266f4873bccc338f353f7b0b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Se-Ran Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sulforaphane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gut microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomarkers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amrita Cheema</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chhanda Bose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marjan Boerma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philip T. Palade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eugenia Carvalho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanjay Awasthi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharda P. Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microorganisms</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 10, p 1500</subfield><subfield code="w">(DE-627)750370696</subfield><subfield code="w">(DE-600)2720891-6</subfield><subfield code="x">20762607</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1500</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/microorganisms8101500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05088a60266f4873bccc338f353f7b0b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-2607/8/10/1500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-2607</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1500</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Se-Ran Jun |
spellingShingle |
Se-Ran Jun misc QH301-705.5 misc aging misc sulforaphane misc gut microbiome misc metabolome misc biomarkers misc Biology (General) Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice |
authorStr |
Se-Ran Jun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750370696 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
20762607 |
topic_title |
QH301-705.5 Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice aging sulforaphane gut microbiome metabolome biomarkers |
topic |
misc QH301-705.5 misc aging misc sulforaphane misc gut microbiome misc metabolome misc biomarkers misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc aging misc sulforaphane misc gut microbiome misc metabolome misc biomarkers misc Biology (General) |
topic_browse |
misc QH301-705.5 misc aging misc sulforaphane misc gut microbiome misc metabolome misc biomarkers misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microorganisms |
hierarchy_parent_id |
750370696 |
hierarchy_top_title |
Microorganisms |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750370696 (DE-600)2720891-6 |
title |
Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice |
ctrlnum |
(DE-627)DOAJ035656395 (DE-599)DOAJ05088a60266f4873bccc338f353f7b0b |
title_full |
Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice |
author_sort |
Se-Ran Jun |
journal |
Microorganisms |
journalStr |
Microorganisms |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Se-Ran Jun Amrita Cheema Chhanda Bose Marjan Boerma Philip T. Palade Eugenia Carvalho Sanjay Awasthi Sharda P. Singh |
container_volume |
8 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Se-Ran Jun |
doi_str_mv |
10.3390/microorganisms8101500 |
author2-role |
verfasserin |
title_sort |
multi-omic analysis reveals different effects of sulforaphane on the microbiome and metabolome in old compared to young mice |
callnumber |
QH301-705.5 |
title_auth |
Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice |
abstract |
Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. |
abstractGer |
Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. |
abstract_unstemmed |
Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1500 |
title_short |
Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice |
url |
https://doi.org/10.3390/microorganisms8101500 https://doaj.org/article/05088a60266f4873bccc338f353f7b0b https://www.mdpi.com/2076-2607/8/10/1500 https://doaj.org/toc/2076-2607 |
remote_bool |
true |
author2 |
Amrita Cheema Chhanda Bose Marjan Boerma Philip T. Palade Eugenia Carvalho Sanjay Awasthi Sharda P. Singh |
author2Str |
Amrita Cheema Chhanda Bose Marjan Boerma Philip T. Palade Eugenia Carvalho Sanjay Awasthi Sharda P. Singh |
ppnlink |
750370696 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/microorganisms8101500 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T16:14:50.143Z |
_version_ |
1803575141549998080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035656395</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414083658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/microorganisms8101500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035656395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05088a60266f4873bccc338f353f7b0b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Se-Ran Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6–8 weeks) and old (21–22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, <i<Oscillospira</i<, <i<Ruminococcus</i<, and <i<Allobaculum</i<. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sulforaphane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gut microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomarkers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amrita Cheema</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chhanda Bose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marjan Boerma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philip T. Palade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eugenia Carvalho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanjay Awasthi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharda P. Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microorganisms</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 10, p 1500</subfield><subfield code="w">(DE-627)750370696</subfield><subfield code="w">(DE-600)2720891-6</subfield><subfield code="x">20762607</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1500</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/microorganisms8101500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05088a60266f4873bccc338f353f7b0b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-2607/8/10/1500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-2607</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1500</subfield></datafield></record></collection>
|
score |
7.401311 |