When Are Graded Rings Graded <i<S</i<-Noetherian Rings
Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<...
Ausführliche Beschreibung
Autor*in: |
Dong Kyu Kim [verfasserIn] Jung Wook Lim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 8(2020), 9, p 1532 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:9, p 1532 |
Links: |
---|
DOI / URN: |
10.3390/math8091532 |
---|
Katalog-ID: |
DOAJ035717270 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ035717270 | ||
003 | DE-627 | ||
005 | 20240412214030.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math8091532 |2 doi | |
035 | |a (DE-627)DOAJ035717270 | ||
035 | |a (DE-599)DOAJ3cfeca5647544842a6f73aa195f11161 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Dong Kyu Kim |e verfasserin |4 aut | |
245 | 1 | 0 | |a When Are Graded Rings Graded <i<S</i<-Noetherian Rings |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. | ||
650 | 4 | |a <i<S</i<-Noetherian ring | |
650 | 4 | |a graded <i<S</i<-Noetherian ring | |
650 | 4 | |a <i<S</i<-finite algebra | |
650 | 4 | |a Cohen type theorem | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Jung Wook Lim |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 8(2020), 9, p 1532 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:9, p 1532 |
856 | 4 | 0 | |u https://doi.org/10.3390/math8091532 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3cfeca5647544842a6f73aa195f11161 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/8/9/1532 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 9, p 1532 |
author_variant |
d k k dkk j w l jwl |
---|---|
matchkey_str |
article:22277390:2020----::hnrgaernsrddsne |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.3390/math8091532 doi (DE-627)DOAJ035717270 (DE-599)DOAJ3cfeca5647544842a6f73aa195f11161 DE-627 ger DE-627 rakwb eng QA1-939 Dong Kyu Kim verfasserin aut When Are Graded Rings Graded <i<S</i<-Noetherian Rings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. <i<S</i<-Noetherian ring graded <i<S</i<-Noetherian ring <i<S</i<-finite algebra Cohen type theorem Mathematics Jung Wook Lim verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1532 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1532 https://doi.org/10.3390/math8091532 kostenfrei https://doaj.org/article/3cfeca5647544842a6f73aa195f11161 kostenfrei https://www.mdpi.com/2227-7390/8/9/1532 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1532 |
spelling |
10.3390/math8091532 doi (DE-627)DOAJ035717270 (DE-599)DOAJ3cfeca5647544842a6f73aa195f11161 DE-627 ger DE-627 rakwb eng QA1-939 Dong Kyu Kim verfasserin aut When Are Graded Rings Graded <i<S</i<-Noetherian Rings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. <i<S</i<-Noetherian ring graded <i<S</i<-Noetherian ring <i<S</i<-finite algebra Cohen type theorem Mathematics Jung Wook Lim verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1532 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1532 https://doi.org/10.3390/math8091532 kostenfrei https://doaj.org/article/3cfeca5647544842a6f73aa195f11161 kostenfrei https://www.mdpi.com/2227-7390/8/9/1532 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1532 |
allfields_unstemmed |
10.3390/math8091532 doi (DE-627)DOAJ035717270 (DE-599)DOAJ3cfeca5647544842a6f73aa195f11161 DE-627 ger DE-627 rakwb eng QA1-939 Dong Kyu Kim verfasserin aut When Are Graded Rings Graded <i<S</i<-Noetherian Rings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. <i<S</i<-Noetherian ring graded <i<S</i<-Noetherian ring <i<S</i<-finite algebra Cohen type theorem Mathematics Jung Wook Lim verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1532 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1532 https://doi.org/10.3390/math8091532 kostenfrei https://doaj.org/article/3cfeca5647544842a6f73aa195f11161 kostenfrei https://www.mdpi.com/2227-7390/8/9/1532 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1532 |
allfieldsGer |
10.3390/math8091532 doi (DE-627)DOAJ035717270 (DE-599)DOAJ3cfeca5647544842a6f73aa195f11161 DE-627 ger DE-627 rakwb eng QA1-939 Dong Kyu Kim verfasserin aut When Are Graded Rings Graded <i<S</i<-Noetherian Rings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. <i<S</i<-Noetherian ring graded <i<S</i<-Noetherian ring <i<S</i<-finite algebra Cohen type theorem Mathematics Jung Wook Lim verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1532 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1532 https://doi.org/10.3390/math8091532 kostenfrei https://doaj.org/article/3cfeca5647544842a6f73aa195f11161 kostenfrei https://www.mdpi.com/2227-7390/8/9/1532 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1532 |
allfieldsSound |
10.3390/math8091532 doi (DE-627)DOAJ035717270 (DE-599)DOAJ3cfeca5647544842a6f73aa195f11161 DE-627 ger DE-627 rakwb eng QA1-939 Dong Kyu Kim verfasserin aut When Are Graded Rings Graded <i<S</i<-Noetherian Rings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. <i<S</i<-Noetherian ring graded <i<S</i<-Noetherian ring <i<S</i<-finite algebra Cohen type theorem Mathematics Jung Wook Lim verfasserin aut In Mathematics MDPI AG, 2013 8(2020), 9, p 1532 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:8 year:2020 number:9, p 1532 https://doi.org/10.3390/math8091532 kostenfrei https://doaj.org/article/3cfeca5647544842a6f73aa195f11161 kostenfrei https://www.mdpi.com/2227-7390/8/9/1532 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 1532 |
language |
English |
source |
In Mathematics 8(2020), 9, p 1532 volume:8 year:2020 number:9, p 1532 |
sourceStr |
In Mathematics 8(2020), 9, p 1532 volume:8 year:2020 number:9, p 1532 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<S</i<-Noetherian ring graded <i<S</i<-Noetherian ring <i<S</i<-finite algebra Cohen type theorem Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
Dong Kyu Kim @@aut@@ Jung Wook Lim @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ035717270 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035717270</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412214030.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math8091532</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035717270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3cfeca5647544842a6f73aa195f11161</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dong Kyu Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">When Are Graded Rings Graded <i<S</i<-Noetherian Rings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-Noetherian ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graded <i<S</i<-Noetherian ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-finite algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohen type theorem</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung Wook Lim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 9, p 1532</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 1532</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math8091532</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3cfeca5647544842a6f73aa195f11161</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/8/9/1532</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 1532</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dong Kyu Kim |
spellingShingle |
Dong Kyu Kim misc QA1-939 misc <i<S</i<-Noetherian ring misc graded <i<S</i<-Noetherian ring misc <i<S</i<-finite algebra misc Cohen type theorem misc Mathematics When Are Graded Rings Graded <i<S</i<-Noetherian Rings |
authorStr |
Dong Kyu Kim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 When Are Graded Rings Graded <i<S</i<-Noetherian Rings <i<S</i<-Noetherian ring graded <i<S</i<-Noetherian ring <i<S</i<-finite algebra Cohen type theorem |
topic |
misc QA1-939 misc <i<S</i<-Noetherian ring misc graded <i<S</i<-Noetherian ring misc <i<S</i<-finite algebra misc Cohen type theorem misc Mathematics |
topic_unstemmed |
misc QA1-939 misc <i<S</i<-Noetherian ring misc graded <i<S</i<-Noetherian ring misc <i<S</i<-finite algebra misc Cohen type theorem misc Mathematics |
topic_browse |
misc QA1-939 misc <i<S</i<-Noetherian ring misc graded <i<S</i<-Noetherian ring misc <i<S</i<-finite algebra misc Cohen type theorem misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
When Are Graded Rings Graded <i<S</i<-Noetherian Rings |
ctrlnum |
(DE-627)DOAJ035717270 (DE-599)DOAJ3cfeca5647544842a6f73aa195f11161 |
title_full |
When Are Graded Rings Graded <i<S</i<-Noetherian Rings |
author_sort |
Dong Kyu Kim |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Dong Kyu Kim Jung Wook Lim |
container_volume |
8 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Dong Kyu Kim |
doi_str_mv |
10.3390/math8091532 |
author2-role |
verfasserin |
title_sort |
when are graded rings graded <i<s</i<-noetherian rings |
callnumber |
QA1-939 |
title_auth |
When Are Graded Rings Graded <i<S</i<-Noetherian Rings |
abstract |
Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. |
abstractGer |
Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. |
abstract_unstemmed |
Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1532 |
title_short |
When Are Graded Rings Graded <i<S</i<-Noetherian Rings |
url |
https://doi.org/10.3390/math8091532 https://doaj.org/article/3cfeca5647544842a6f73aa195f11161 https://www.mdpi.com/2227-7390/8/9/1532 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
Jung Wook Lim |
author2Str |
Jung Wook Lim |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math8091532 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T16:35:53.172Z |
_version_ |
1803576465877368832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035717270</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412214030.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math8091532</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035717270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3cfeca5647544842a6f73aa195f11161</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dong Kyu Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">When Are Graded Rings Graded <i<S</i<-Noetherian Rings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula< be a commutative monoid, <inline-formula<<math display="inline"<<semantics<<mrow<<mi<R</mi<<mo<=</mo<<msub<<mo<⨁</mo<<mrow<<mi<α</mi<<mo<∈</mo<<mi mathvariant="sans-serif"<Γ</mi<</mrow<</msub<<msub<<mi<R</mi<<mi<α</mi<</msub<</mrow<</semantics<</math<</inline-formula< a <inline-formula<<math display="inline"<<semantics<<mi mathvariant="sans-serif"<Γ</mi<</semantics<</math<</inline-formula<-graded ring and <i<S</i< a multiplicative subset of <inline-formula<<math display="inline"<<semantics<<msub<<mi<R</mi<<mn<0</mn<</msub<</semantics<</math<</inline-formula<. We define <i<R</i< to be a graded <i<S</i<-Noetherian ring if every homogeneous ideal of <i<R</i< is <i<S</i<-finite. In this paper, we characterize when the ring <i<R</i< is a graded <i<S</i<-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded <i<S</i<-Noetherian ring. Finally, we give an example of a graded <i<S</i<-Noetherian ring which is not an <i<S</i<-Noetherian ring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-Noetherian ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graded <i<S</i<-Noetherian ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-finite algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohen type theorem</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung Wook Lim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 9, p 1532</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 1532</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math8091532</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3cfeca5647544842a6f73aa195f11161</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/8/9/1532</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 1532</subfield></datafield></record></collection>
|
score |
7.401477 |