Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials
Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish...
Ausführliche Beschreibung
Autor*in: |
Trapti Neer [verfasserIn] Purshottam Narain Agrawal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
first and second order modulus of continuity weighted modulus of continuity |
---|
Übergeordnetes Werk: |
In: Journal of Inequalities and Applications - SpringerOpen, 2002, (2017), 1, Seite 20 |
---|---|
Übergeordnetes Werk: |
year:2017 ; number:1 ; pages:20 |
Links: |
---|
DOI / URN: |
10.1186/s13660-017-1520-y |
---|
Katalog-ID: |
DOAJ035915285 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ035915285 | ||
003 | DE-627 | ||
005 | 20230502144531.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13660-017-1520-y |2 doi | |
035 | |a (DE-627)DOAJ035915285 | ||
035 | |a (DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Trapti Neer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. | ||
650 | 4 | |a Steklov mean | |
650 | 4 | |a first and second order modulus of continuity | |
650 | 4 | |a weighted modulus of continuity | |
650 | 4 | |a Grüss-Voronovskaya type theorem | |
650 | 4 | |a functions of bounded variation | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Purshottam Narain Agrawal |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Inequalities and Applications |d SpringerOpen, 2002 |g (2017), 1, Seite 20 |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029242X |7 nnns |
773 | 1 | 8 | |g year:2017 |g number:1 |g pages:20 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13660-017-1520-y |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13660-017-1520-y |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1029-242X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2017 |e 1 |h 20 |
author_variant |
t n tn p n a pna |
---|---|
matchkey_str |
article:1029242X:2017----::uniaieooosaangsvrnvkytptermfrzzureetpoeaoslne |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QA |
publishDate |
2017 |
allfields |
10.1186/s13660-017-1520-y doi (DE-627)DOAJ035915285 (DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992 DE-627 ger DE-627 rakwb eng QA1-939 Trapti Neer verfasserin aut Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. Steklov mean first and second order modulus of continuity weighted modulus of continuity Grüss-Voronovskaya type theorem functions of bounded variation Mathematics Purshottam Narain Agrawal verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2017), 1, Seite 20 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2017 number:1 pages:20 https://doi.org/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992 kostenfrei http://link.springer.com/article/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 1 20 |
spelling |
10.1186/s13660-017-1520-y doi (DE-627)DOAJ035915285 (DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992 DE-627 ger DE-627 rakwb eng QA1-939 Trapti Neer verfasserin aut Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. Steklov mean first and second order modulus of continuity weighted modulus of continuity Grüss-Voronovskaya type theorem functions of bounded variation Mathematics Purshottam Narain Agrawal verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2017), 1, Seite 20 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2017 number:1 pages:20 https://doi.org/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992 kostenfrei http://link.springer.com/article/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 1 20 |
allfields_unstemmed |
10.1186/s13660-017-1520-y doi (DE-627)DOAJ035915285 (DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992 DE-627 ger DE-627 rakwb eng QA1-939 Trapti Neer verfasserin aut Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. Steklov mean first and second order modulus of continuity weighted modulus of continuity Grüss-Voronovskaya type theorem functions of bounded variation Mathematics Purshottam Narain Agrawal verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2017), 1, Seite 20 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2017 number:1 pages:20 https://doi.org/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992 kostenfrei http://link.springer.com/article/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 1 20 |
allfieldsGer |
10.1186/s13660-017-1520-y doi (DE-627)DOAJ035915285 (DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992 DE-627 ger DE-627 rakwb eng QA1-939 Trapti Neer verfasserin aut Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. Steklov mean first and second order modulus of continuity weighted modulus of continuity Grüss-Voronovskaya type theorem functions of bounded variation Mathematics Purshottam Narain Agrawal verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2017), 1, Seite 20 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2017 number:1 pages:20 https://doi.org/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992 kostenfrei http://link.springer.com/article/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 1 20 |
allfieldsSound |
10.1186/s13660-017-1520-y doi (DE-627)DOAJ035915285 (DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992 DE-627 ger DE-627 rakwb eng QA1-939 Trapti Neer verfasserin aut Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. Steklov mean first and second order modulus of continuity weighted modulus of continuity Grüss-Voronovskaya type theorem functions of bounded variation Mathematics Purshottam Narain Agrawal verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2017), 1, Seite 20 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2017 number:1 pages:20 https://doi.org/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992 kostenfrei http://link.springer.com/article/10.1186/s13660-017-1520-y kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 1 20 |
language |
English |
source |
In Journal of Inequalities and Applications (2017), 1, Seite 20 year:2017 number:1 pages:20 |
sourceStr |
In Journal of Inequalities and Applications (2017), 1, Seite 20 year:2017 number:1 pages:20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Steklov mean first and second order modulus of continuity weighted modulus of continuity Grüss-Voronovskaya type theorem functions of bounded variation Mathematics |
isfreeaccess_bool |
true |
container_title |
Journal of Inequalities and Applications |
authorswithroles_txt_mv |
Trapti Neer @@aut@@ Purshottam Narain Agrawal @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
320977056 |
id |
DOAJ035915285 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035915285</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502144531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-017-1520-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035915285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Trapti Neer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steklov mean</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">first and second order modulus of continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted modulus of continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grüss-Voronovskaya type theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functions of bounded variation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Purshottam Narain Agrawal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Inequalities and Applications</subfield><subfield code="d">SpringerOpen, 2002</subfield><subfield code="g">(2017), 1, Seite 20</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13660-017-1520-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13660-017-1520-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-242X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Trapti Neer |
spellingShingle |
Trapti Neer misc QA1-939 misc Steklov mean misc first and second order modulus of continuity misc weighted modulus of continuity misc Grüss-Voronovskaya type theorem misc functions of bounded variation misc Mathematics Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials |
authorStr |
Trapti Neer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
1029242X |
topic_title |
QA1-939 Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials Steklov mean first and second order modulus of continuity weighted modulus of continuity Grüss-Voronovskaya type theorem functions of bounded variation |
topic |
misc QA1-939 misc Steklov mean misc first and second order modulus of continuity misc weighted modulus of continuity misc Grüss-Voronovskaya type theorem misc functions of bounded variation misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Steklov mean misc first and second order modulus of continuity misc weighted modulus of continuity misc Grüss-Voronovskaya type theorem misc functions of bounded variation misc Mathematics |
topic_browse |
misc QA1-939 misc Steklov mean misc first and second order modulus of continuity misc weighted modulus of continuity misc Grüss-Voronovskaya type theorem misc functions of bounded variation misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Inequalities and Applications |
hierarchy_parent_id |
320977056 |
hierarchy_top_title |
Journal of Inequalities and Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials |
ctrlnum |
(DE-627)DOAJ035915285 (DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992 |
title_full |
Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials |
author_sort |
Trapti Neer |
journal |
Journal of Inequalities and Applications |
journalStr |
Journal of Inequalities and Applications |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
20 |
author_browse |
Trapti Neer Purshottam Narain Agrawal |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Trapti Neer |
doi_str_mv |
10.1186/s13660-017-1520-y |
author2-role |
verfasserin |
title_sort |
quantitative-voronovskaya and grüss-voronovskaya type theorems for szász-durrmeyer type operators blended with multiple appell polynomials |
callnumber |
QA1-939 |
title_auth |
Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials |
abstract |
Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. |
abstractGer |
Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. |
abstract_unstemmed |
Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials |
url |
https://doi.org/10.1186/s13660-017-1520-y https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992 http://link.springer.com/article/10.1186/s13660-017-1520-y https://doaj.org/toc/1029-242X |
remote_bool |
true |
author2 |
Purshottam Narain Agrawal |
author2Str |
Purshottam Narain Agrawal |
ppnlink |
320977056 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13660-017-1520-y |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T17:40:01.942Z |
_version_ |
1803580501604171776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ035915285</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502144531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-017-1520-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ035915285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0af080b4b534606a1ff0a6ba6f32992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Trapti Neer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and Grüss-Voronovskaya type theorem. We also establish a local approximation theorem by means of the Steklov means in terms of the first and the second order modulus of continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree of approximation by means of the weighted spaces. Lastly, we find the rate of approximation of functions having a derivative of bounded variation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steklov mean</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">first and second order modulus of continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted modulus of continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grüss-Voronovskaya type theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functions of bounded variation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Purshottam Narain Agrawal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Inequalities and Applications</subfield><subfield code="d">SpringerOpen, 2002</subfield><subfield code="g">(2017), 1, Seite 20</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13660-017-1520-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13660-017-1520-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-242X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
score |
7.4017544 |