Weak θ-contractions and some fixed point results with applications to fractal theory
Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in genera...
Ausführliche Beschreibung
Autor*in: |
Mohammad Imdad [verfasserIn] Waleed M. Alfaqih [verfasserIn] Idrees A. Khan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Advances in Difference Equations - SpringerOpen, 2006, (2018), 1, Seite 18 |
---|---|
Übergeordnetes Werk: |
year:2018 ; number:1 ; pages:18 |
Links: |
---|
DOI / URN: |
10.1186/s13662-018-1900-8 |
---|
Katalog-ID: |
DOAJ036009253 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ036009253 | ||
003 | DE-627 | ||
005 | 20230502130106.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-018-1900-8 |2 doi | |
035 | |a (DE-627)DOAJ036009253 | ||
035 | |a (DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Mohammad Imdad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Weak θ-contractions and some fixed point results with applications to fractal theory |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. | ||
650 | 4 | |a Fixed point | |
650 | 4 | |a θ-contraction | |
650 | 4 | |a Weak θ-contraction | |
650 | 4 | |a Iterated function system | |
650 | 4 | |a Countable iterated function system | |
650 | 4 | |a Attractor | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Waleed M. Alfaqih |e verfasserin |4 aut | |
700 | 0 | |a Idrees A. Khan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advances in Difference Equations |d SpringerOpen, 2006 |g (2018), 1, Seite 18 |w (DE-627)377755699 |w (DE-600)2132815-8 |x 16871847 |7 nnns |
773 | 1 | 8 | |g year:2018 |g number:1 |g pages:18 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13662-018-1900-8 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13662-018-1900-8 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-1847 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2018 |e 1 |h 18 |
author_variant |
m i mi w m a wma i a k iak |
---|---|
matchkey_str |
article:16871847:2018----::ekotatosnsmfxdonrslsihplc |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QA |
publishDate |
2018 |
allfields |
10.1186/s13662-018-1900-8 doi (DE-627)DOAJ036009253 (DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70 DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Imdad verfasserin aut Weak θ-contractions and some fixed point results with applications to fractal theory 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. Fixed point θ-contraction Weak θ-contraction Iterated function system Countable iterated function system Attractor Mathematics Waleed M. Alfaqih verfasserin aut Idrees A. Khan verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 18 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:18 https://doi.org/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70 kostenfrei http://link.springer.com/article/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 18 |
spelling |
10.1186/s13662-018-1900-8 doi (DE-627)DOAJ036009253 (DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70 DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Imdad verfasserin aut Weak θ-contractions and some fixed point results with applications to fractal theory 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. Fixed point θ-contraction Weak θ-contraction Iterated function system Countable iterated function system Attractor Mathematics Waleed M. Alfaqih verfasserin aut Idrees A. Khan verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 18 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:18 https://doi.org/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70 kostenfrei http://link.springer.com/article/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 18 |
allfields_unstemmed |
10.1186/s13662-018-1900-8 doi (DE-627)DOAJ036009253 (DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70 DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Imdad verfasserin aut Weak θ-contractions and some fixed point results with applications to fractal theory 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. Fixed point θ-contraction Weak θ-contraction Iterated function system Countable iterated function system Attractor Mathematics Waleed M. Alfaqih verfasserin aut Idrees A. Khan verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 18 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:18 https://doi.org/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70 kostenfrei http://link.springer.com/article/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 18 |
allfieldsGer |
10.1186/s13662-018-1900-8 doi (DE-627)DOAJ036009253 (DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70 DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Imdad verfasserin aut Weak θ-contractions and some fixed point results with applications to fractal theory 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. Fixed point θ-contraction Weak θ-contraction Iterated function system Countable iterated function system Attractor Mathematics Waleed M. Alfaqih verfasserin aut Idrees A. Khan verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 18 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:18 https://doi.org/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70 kostenfrei http://link.springer.com/article/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 18 |
allfieldsSound |
10.1186/s13662-018-1900-8 doi (DE-627)DOAJ036009253 (DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70 DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Imdad verfasserin aut Weak θ-contractions and some fixed point results with applications to fractal theory 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. Fixed point θ-contraction Weak θ-contraction Iterated function system Countable iterated function system Attractor Mathematics Waleed M. Alfaqih verfasserin aut Idrees A. Khan verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 18 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:18 https://doi.org/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70 kostenfrei http://link.springer.com/article/10.1186/s13662-018-1900-8 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 18 |
language |
English |
source |
In Advances in Difference Equations (2018), 1, Seite 18 year:2018 number:1 pages:18 |
sourceStr |
In Advances in Difference Equations (2018), 1, Seite 18 year:2018 number:1 pages:18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fixed point θ-contraction Weak θ-contraction Iterated function system Countable iterated function system Attractor Mathematics |
isfreeaccess_bool |
true |
container_title |
Advances in Difference Equations |
authorswithroles_txt_mv |
Mohammad Imdad @@aut@@ Waleed M. Alfaqih @@aut@@ Idrees A. Khan @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
377755699 |
id |
DOAJ036009253 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036009253</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502130106.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-018-1900-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036009253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Imdad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weak θ-contractions and some fixed point results with applications to fractal theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">θ-contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak θ-contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterated function system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Countable iterated function system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attractor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Waleed M. Alfaqih</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idrees A. Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Difference Equations</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2018), 1, Seite 18</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">16871847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13662-018-1900-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13662-018-1900-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-1847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mohammad Imdad |
spellingShingle |
Mohammad Imdad misc QA1-939 misc Fixed point misc θ-contraction misc Weak θ-contraction misc Iterated function system misc Countable iterated function system misc Attractor misc Mathematics Weak θ-contractions and some fixed point results with applications to fractal theory |
authorStr |
Mohammad Imdad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377755699 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
16871847 |
topic_title |
QA1-939 Weak θ-contractions and some fixed point results with applications to fractal theory Fixed point θ-contraction Weak θ-contraction Iterated function system Countable iterated function system Attractor |
topic |
misc QA1-939 misc Fixed point misc θ-contraction misc Weak θ-contraction misc Iterated function system misc Countable iterated function system misc Attractor misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Fixed point misc θ-contraction misc Weak θ-contraction misc Iterated function system misc Countable iterated function system misc Attractor misc Mathematics |
topic_browse |
misc QA1-939 misc Fixed point misc θ-contraction misc Weak θ-contraction misc Iterated function system misc Countable iterated function system misc Attractor misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in Difference Equations |
hierarchy_parent_id |
377755699 |
hierarchy_top_title |
Advances in Difference Equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377755699 (DE-600)2132815-8 |
title |
Weak θ-contractions and some fixed point results with applications to fractal theory |
ctrlnum |
(DE-627)DOAJ036009253 (DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70 |
title_full |
Weak θ-contractions and some fixed point results with applications to fractal theory |
author_sort |
Mohammad Imdad |
journal |
Advances in Difference Equations |
journalStr |
Advances in Difference Equations |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
18 |
author_browse |
Mohammad Imdad Waleed M. Alfaqih Idrees A. Khan |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohammad Imdad |
doi_str_mv |
10.1186/s13662-018-1900-8 |
author2-role |
verfasserin |
title_sort |
weak θ-contractions and some fixed point results with applications to fractal theory |
callnumber |
QA1-939 |
title_auth |
Weak θ-contractions and some fixed point results with applications to fractal theory |
abstract |
Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. |
abstractGer |
Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. |
abstract_unstemmed |
Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Weak θ-contractions and some fixed point results with applications to fractal theory |
url |
https://doi.org/10.1186/s13662-018-1900-8 https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70 http://link.springer.com/article/10.1186/s13662-018-1900-8 https://doaj.org/toc/1687-1847 |
remote_bool |
true |
author2 |
Waleed M. Alfaqih Idrees A. Khan |
author2Str |
Waleed M. Alfaqih Idrees A. Khan |
ppnlink |
377755699 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-018-1900-8 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T18:11:38.886Z |
_version_ |
1803582490686783488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036009253</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502130106.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-018-1900-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036009253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ93ba62a5f9c04d959ce4ecfd18a14c70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Imdad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weak θ-contractions and some fixed point results with applications to fractal theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we define weak θ-contractions on a metric space into itself by extending θ-contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38, 2014) and utilize the same to prove some fixed point results besides proving some relation-theoretic fixed point results in generalized metric spaces. Moreover, we give some applications to fractal theory improving the classical Hutchinson–Barnsley′s theory of iterated function systems. We also give illustrative examples to exhibit the utility of our results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">θ-contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak θ-contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterated function system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Countable iterated function system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attractor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Waleed M. Alfaqih</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idrees A. Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Difference Equations</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2018), 1, Seite 18</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">16871847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13662-018-1900-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/93ba62a5f9c04d959ce4ecfd18a14c70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13662-018-1900-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-1847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
score |
7.4013147 |