Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries
The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as a...
Ausführliche Beschreibung
Autor*in: |
Chuan-Zhu Zhang [verfasserIn] Lin-Jie Xie [verfasserIn] Yan Tang [verfasserIn] You Li [verfasserIn] Jun-Cheng Jiang [verfasserIn] An-Chi Huang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 10(2022), 1581, p 1581 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:1581, p 1581 |
Links: |
---|
DOI / URN: |
10.3390/pr10081581 |
---|
Katalog-ID: |
DOAJ036297550 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ036297550 | ||
003 | DE-627 | ||
005 | 20230502062656.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr10081581 |2 doi | |
035 | |a (DE-627)DOAJ036297550 | ||
035 | |a (DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Chuan-Zhu Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. | ||
650 | 4 | |a silicon-based anode | |
650 | 4 | |a thermogravimetric analyzer | |
650 | 4 | |a thermokinetic model | |
650 | 4 | |a electrolyte additive | |
650 | 4 | |a lithium-ion battery | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Lin-Jie Xie |e verfasserin |4 aut | |
700 | 0 | |a Yan Tang |e verfasserin |4 aut | |
700 | 0 | |a You Li |e verfasserin |4 aut | |
700 | 0 | |a Jun-Cheng Jiang |e verfasserin |4 aut | |
700 | 0 | |a An-Chi Huang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 10(2022), 1581, p 1581 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:1581, p 1581 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr10081581 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/10/8/1581 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 1581, p 1581 |
author_variant |
c z z czz l j x ljx y t yt y l yl j c j jcj a c h ach |
---|---|
matchkey_str |
article:22279717:2022----::hrasfteautooslnplmropudaeetoyediiefriiob |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/pr10081581 doi (DE-627)DOAJ036297550 (DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Chuan-Zhu Zhang verfasserin aut Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. silicon-based anode thermogravimetric analyzer thermokinetic model electrolyte additive lithium-ion battery Chemical technology Chemistry Lin-Jie Xie verfasserin aut Yan Tang verfasserin aut You Li verfasserin aut Jun-Cheng Jiang verfasserin aut An-Chi Huang verfasserin aut In Processes MDPI AG, 2013 10(2022), 1581, p 1581 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:1581, p 1581 https://doi.org/10.3390/pr10081581 kostenfrei https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f kostenfrei https://www.mdpi.com/2227-9717/10/8/1581 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1581, p 1581 |
spelling |
10.3390/pr10081581 doi (DE-627)DOAJ036297550 (DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Chuan-Zhu Zhang verfasserin aut Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. silicon-based anode thermogravimetric analyzer thermokinetic model electrolyte additive lithium-ion battery Chemical technology Chemistry Lin-Jie Xie verfasserin aut Yan Tang verfasserin aut You Li verfasserin aut Jun-Cheng Jiang verfasserin aut An-Chi Huang verfasserin aut In Processes MDPI AG, 2013 10(2022), 1581, p 1581 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:1581, p 1581 https://doi.org/10.3390/pr10081581 kostenfrei https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f kostenfrei https://www.mdpi.com/2227-9717/10/8/1581 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1581, p 1581 |
allfields_unstemmed |
10.3390/pr10081581 doi (DE-627)DOAJ036297550 (DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Chuan-Zhu Zhang verfasserin aut Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. silicon-based anode thermogravimetric analyzer thermokinetic model electrolyte additive lithium-ion battery Chemical technology Chemistry Lin-Jie Xie verfasserin aut Yan Tang verfasserin aut You Li verfasserin aut Jun-Cheng Jiang verfasserin aut An-Chi Huang verfasserin aut In Processes MDPI AG, 2013 10(2022), 1581, p 1581 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:1581, p 1581 https://doi.org/10.3390/pr10081581 kostenfrei https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f kostenfrei https://www.mdpi.com/2227-9717/10/8/1581 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1581, p 1581 |
allfieldsGer |
10.3390/pr10081581 doi (DE-627)DOAJ036297550 (DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Chuan-Zhu Zhang verfasserin aut Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. silicon-based anode thermogravimetric analyzer thermokinetic model electrolyte additive lithium-ion battery Chemical technology Chemistry Lin-Jie Xie verfasserin aut Yan Tang verfasserin aut You Li verfasserin aut Jun-Cheng Jiang verfasserin aut An-Chi Huang verfasserin aut In Processes MDPI AG, 2013 10(2022), 1581, p 1581 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:1581, p 1581 https://doi.org/10.3390/pr10081581 kostenfrei https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f kostenfrei https://www.mdpi.com/2227-9717/10/8/1581 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1581, p 1581 |
allfieldsSound |
10.3390/pr10081581 doi (DE-627)DOAJ036297550 (DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Chuan-Zhu Zhang verfasserin aut Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. silicon-based anode thermogravimetric analyzer thermokinetic model electrolyte additive lithium-ion battery Chemical technology Chemistry Lin-Jie Xie verfasserin aut Yan Tang verfasserin aut You Li verfasserin aut Jun-Cheng Jiang verfasserin aut An-Chi Huang verfasserin aut In Processes MDPI AG, 2013 10(2022), 1581, p 1581 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:1581, p 1581 https://doi.org/10.3390/pr10081581 kostenfrei https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f kostenfrei https://www.mdpi.com/2227-9717/10/8/1581 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1581, p 1581 |
language |
English |
source |
In Processes 10(2022), 1581, p 1581 volume:10 year:2022 number:1581, p 1581 |
sourceStr |
In Processes 10(2022), 1581, p 1581 volume:10 year:2022 number:1581, p 1581 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
silicon-based anode thermogravimetric analyzer thermokinetic model electrolyte additive lithium-ion battery Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Chuan-Zhu Zhang @@aut@@ Lin-Jie Xie @@aut@@ Yan Tang @@aut@@ You Li @@aut@@ Jun-Cheng Jiang @@aut@@ An-Chi Huang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ036297550 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036297550</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502062656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10081581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036297550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuan-Zhu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon-based anode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermogravimetric analyzer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermokinetic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrolyte additive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion battery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin-Jie Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">You Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun-Cheng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">An-Chi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 1581, p 1581</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1581, p 1581</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10081581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/8/1581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">1581, p 1581</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Chuan-Zhu Zhang |
spellingShingle |
Chuan-Zhu Zhang misc TP1-1185 misc QD1-999 misc silicon-based anode misc thermogravimetric analyzer misc thermokinetic model misc electrolyte additive misc lithium-ion battery misc Chemical technology misc Chemistry Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries |
authorStr |
Chuan-Zhu Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries silicon-based anode thermogravimetric analyzer thermokinetic model electrolyte additive lithium-ion battery |
topic |
misc TP1-1185 misc QD1-999 misc silicon-based anode misc thermogravimetric analyzer misc thermokinetic model misc electrolyte additive misc lithium-ion battery misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc silicon-based anode misc thermogravimetric analyzer misc thermokinetic model misc electrolyte additive misc lithium-ion battery misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc silicon-based anode misc thermogravimetric analyzer misc thermokinetic model misc electrolyte additive misc lithium-ion battery misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries |
ctrlnum |
(DE-627)DOAJ036297550 (DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f |
title_full |
Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries |
author_sort |
Chuan-Zhu Zhang |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Chuan-Zhu Zhang Lin-Jie Xie Yan Tang You Li Jun-Cheng Jiang An-Chi Huang |
container_volume |
10 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Chuan-Zhu Zhang |
doi_str_mv |
10.3390/pr10081581 |
author2-role |
verfasserin |
title_sort |
thermal safety evaluation of silane polymer compounds as electrolyte additives for silicon-based anode lithium-ion batteries |
callnumber |
TP1-1185 |
title_auth |
Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries |
abstract |
The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. |
abstractGer |
The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. |
abstract_unstemmed |
The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1581, p 1581 |
title_short |
Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries |
url |
https://doi.org/10.3390/pr10081581 https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f https://www.mdpi.com/2227-9717/10/8/1581 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Lin-Jie Xie Yan Tang You Li Jun-Cheng Jiang An-Chi Huang |
author2Str |
Lin-Jie Xie Yan Tang You Li Jun-Cheng Jiang An-Chi Huang |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr10081581 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T19:47:43.790Z |
_version_ |
1803588535646683138 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036297550</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502062656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10081581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036297550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ340e44a8ff2742128f6ced02903c9b2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuan-Zhu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal Safety Evaluation of Silane Polymer Compounds as Electrolyte Additives for Silicon-Based Anode Lithium-Ion Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The capacity fading and thermal safety issues caused by the volume effect of Si-based anodes and unstable solid electrolyte interphase (SEI) films during long-term cycling limit its large-scale application. In this study, silane polymer compound (2-cyanoethyl) triethoxysilane (TCN) was selected as an electrolyte additive to improve the reversibility and thermal safety of Si-based anode lithium-ion batteries (LIBs). TCN prevented the thermal interaction between the vitiated anode and electrolyte, and the onset temperature of the thermal reaction increased from 122.22 to 127.07 °C, as demonstrated by the results of thermogravimetric analysis and differential scanning calorimetry. The thermal stability of lithiated anodes containing various electrolytes was then assessed using a range of thermo-kinetic models. The results revealed that the activation energy of Si-based lithiated anodes increased from 68.46 to 91.32 kJ/mol, while the thermal hazard greatly decreased. Additionally, the electrochemical test and characterization results showed that TCN helped generate a stable SEI coating with more Li<sub<2</sub<CO<sub<3</sub< components, which improved the cells’ cycle stability. This study provides a new reference for the growth of LIBs with high security and energy density.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon-based anode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermogravimetric analyzer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermokinetic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrolyte additive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion battery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin-Jie Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">You Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun-Cheng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">An-Chi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 1581, p 1581</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1581, p 1581</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10081581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/340e44a8ff2742128f6ced02903c9b2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/8/1581</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">1581, p 1581</subfield></datafield></record></collection>
|
score |
7.400304 |