Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements
The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis...
Ausführliche Beschreibung
Autor*in: |
Alexa Raffaniello [verfasserIn] Matthew Bauer [verfasserIn] Md. Safiuddin [verfasserIn] Mohab El-Hakim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Infrastructures - MDPI AG, 2017, 7(2022), 8, p 100 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2022 ; number:8, p 100 |
Links: |
---|
DOI / URN: |
10.3390/infrastructures7080100 |
---|
Katalog-ID: |
DOAJ036391506 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ036391506 | ||
003 | DE-627 | ||
005 | 20240414074151.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/infrastructures7080100 |2 doi | |
035 | |a (DE-627)DOAJ036391506 | ||
035 | |a (DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Alexa Raffaniello |e verfasserin |4 aut | |
245 | 1 | 0 | |a Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. | ||
650 | 4 | |a climate | |
650 | 4 | |a composite pavement | |
650 | 4 | |a deterioration models | |
650 | 4 | |a flexible pavement | |
650 | 4 | |a long-term pavement performance | |
650 | 4 | |a rutting | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Matthew Bauer |e verfasserin |4 aut | |
700 | 0 | |a Md. Safiuddin |e verfasserin |4 aut | |
700 | 0 | |a Mohab El-Hakim |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Infrastructures |d MDPI AG, 2017 |g 7(2022), 8, p 100 |w (DE-627)1015391176 |x 24123811 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2022 |g number:8, p 100 |
856 | 4 | 0 | |u https://doi.org/10.3390/infrastructures7080100 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2412-3811/7/8/100 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2412-3811 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2022 |e 8, p 100 |
author_variant |
a r ar m b mb m s ms m e h meh |
---|---|
matchkey_str |
article:24123811:2022----::rfiadlmtipcsnutnadhracaknifeil |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/infrastructures7080100 doi (DE-627)DOAJ036391506 (DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e DE-627 ger DE-627 rakwb eng Alexa Raffaniello verfasserin aut Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. climate composite pavement deterioration models flexible pavement long-term pavement performance rutting Technology T Matthew Bauer verfasserin aut Md. Safiuddin verfasserin aut Mohab El-Hakim verfasserin aut In Infrastructures MDPI AG, 2017 7(2022), 8, p 100 (DE-627)1015391176 24123811 nnns volume:7 year:2022 number:8, p 100 https://doi.org/10.3390/infrastructures7080100 kostenfrei https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e kostenfrei https://www.mdpi.com/2412-3811/7/8/100 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2022 8, p 100 |
spelling |
10.3390/infrastructures7080100 doi (DE-627)DOAJ036391506 (DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e DE-627 ger DE-627 rakwb eng Alexa Raffaniello verfasserin aut Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. climate composite pavement deterioration models flexible pavement long-term pavement performance rutting Technology T Matthew Bauer verfasserin aut Md. Safiuddin verfasserin aut Mohab El-Hakim verfasserin aut In Infrastructures MDPI AG, 2017 7(2022), 8, p 100 (DE-627)1015391176 24123811 nnns volume:7 year:2022 number:8, p 100 https://doi.org/10.3390/infrastructures7080100 kostenfrei https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e kostenfrei https://www.mdpi.com/2412-3811/7/8/100 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2022 8, p 100 |
allfields_unstemmed |
10.3390/infrastructures7080100 doi (DE-627)DOAJ036391506 (DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e DE-627 ger DE-627 rakwb eng Alexa Raffaniello verfasserin aut Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. climate composite pavement deterioration models flexible pavement long-term pavement performance rutting Technology T Matthew Bauer verfasserin aut Md. Safiuddin verfasserin aut Mohab El-Hakim verfasserin aut In Infrastructures MDPI AG, 2017 7(2022), 8, p 100 (DE-627)1015391176 24123811 nnns volume:7 year:2022 number:8, p 100 https://doi.org/10.3390/infrastructures7080100 kostenfrei https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e kostenfrei https://www.mdpi.com/2412-3811/7/8/100 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2022 8, p 100 |
allfieldsGer |
10.3390/infrastructures7080100 doi (DE-627)DOAJ036391506 (DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e DE-627 ger DE-627 rakwb eng Alexa Raffaniello verfasserin aut Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. climate composite pavement deterioration models flexible pavement long-term pavement performance rutting Technology T Matthew Bauer verfasserin aut Md. Safiuddin verfasserin aut Mohab El-Hakim verfasserin aut In Infrastructures MDPI AG, 2017 7(2022), 8, p 100 (DE-627)1015391176 24123811 nnns volume:7 year:2022 number:8, p 100 https://doi.org/10.3390/infrastructures7080100 kostenfrei https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e kostenfrei https://www.mdpi.com/2412-3811/7/8/100 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2022 8, p 100 |
allfieldsSound |
10.3390/infrastructures7080100 doi (DE-627)DOAJ036391506 (DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e DE-627 ger DE-627 rakwb eng Alexa Raffaniello verfasserin aut Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. climate composite pavement deterioration models flexible pavement long-term pavement performance rutting Technology T Matthew Bauer verfasserin aut Md. Safiuddin verfasserin aut Mohab El-Hakim verfasserin aut In Infrastructures MDPI AG, 2017 7(2022), 8, p 100 (DE-627)1015391176 24123811 nnns volume:7 year:2022 number:8, p 100 https://doi.org/10.3390/infrastructures7080100 kostenfrei https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e kostenfrei https://www.mdpi.com/2412-3811/7/8/100 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2022 8, p 100 |
language |
English |
source |
In Infrastructures 7(2022), 8, p 100 volume:7 year:2022 number:8, p 100 |
sourceStr |
In Infrastructures 7(2022), 8, p 100 volume:7 year:2022 number:8, p 100 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
climate composite pavement deterioration models flexible pavement long-term pavement performance rutting Technology T |
isfreeaccess_bool |
true |
container_title |
Infrastructures |
authorswithroles_txt_mv |
Alexa Raffaniello @@aut@@ Matthew Bauer @@aut@@ Md. Safiuddin @@aut@@ Mohab El-Hakim @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1015391176 |
id |
DOAJ036391506 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036391506</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414074151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/infrastructures7080100</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036391506</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexa Raffaniello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite pavement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deterioration models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible pavement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-term pavement performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rutting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthew Bauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Md. Safiuddin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohab El-Hakim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Infrastructures</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">7(2022), 8, p 100</subfield><subfield code="w">(DE-627)1015391176</subfield><subfield code="x">24123811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 100</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/infrastructures7080100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2412-3811/7/8/100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2412-3811</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 100</subfield></datafield></record></collection>
|
author |
Alexa Raffaniello |
spellingShingle |
Alexa Raffaniello misc climate misc composite pavement misc deterioration models misc flexible pavement misc long-term pavement performance misc rutting misc Technology misc T Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements |
authorStr |
Alexa Raffaniello |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1015391176 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
24123811 |
topic_title |
Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements climate composite pavement deterioration models flexible pavement long-term pavement performance rutting |
topic |
misc climate misc composite pavement misc deterioration models misc flexible pavement misc long-term pavement performance misc rutting misc Technology misc T |
topic_unstemmed |
misc climate misc composite pavement misc deterioration models misc flexible pavement misc long-term pavement performance misc rutting misc Technology misc T |
topic_browse |
misc climate misc composite pavement misc deterioration models misc flexible pavement misc long-term pavement performance misc rutting misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Infrastructures |
hierarchy_parent_id |
1015391176 |
hierarchy_top_title |
Infrastructures |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1015391176 |
title |
Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements |
ctrlnum |
(DE-627)DOAJ036391506 (DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e |
title_full |
Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements |
author_sort |
Alexa Raffaniello |
journal |
Infrastructures |
journalStr |
Infrastructures |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Alexa Raffaniello Matthew Bauer Md. Safiuddin Mohab El-Hakim |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Alexa Raffaniello |
doi_str_mv |
10.3390/infrastructures7080100 |
author2-role |
verfasserin |
title_sort |
traffic and climate impacts on rutting and thermal cracking in flexible and composite pavements |
title_auth |
Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements |
abstract |
The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. |
abstractGer |
The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. |
abstract_unstemmed |
The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
8, p 100 |
title_short |
Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements |
url |
https://doi.org/10.3390/infrastructures7080100 https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e https://www.mdpi.com/2412-3811/7/8/100 https://doaj.org/toc/2412-3811 |
remote_bool |
true |
author2 |
Matthew Bauer Md. Safiuddin Mohab El-Hakim |
author2Str |
Matthew Bauer Md. Safiuddin Mohab El-Hakim |
ppnlink |
1015391176 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/infrastructures7080100 |
up_date |
2024-07-03T20:19:41.112Z |
_version_ |
1803590546085642240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036391506</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414074151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/infrastructures7080100</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036391506</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ79b2c9db2ce146289a04ef014d9b538e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexa Raffaniello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Traffic and Climate Impacts on Rutting and Thermal Cracking in Flexible and Composite Pavements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study presented in this paper analyzed four long-term pavement performance (LTPP) test sections located in the states of New York (NY) and California (CA). Two of them are flexible pavement sections, whereas the other two are composite pavement sections. Two levels of analysis—in-state analysis and cross-state analysis—were performed for these pavement sections to determine the impacts of traffic and climate conditions. The performance of the pavement sections was evaluated in respect of thermal cracking and rutting resistance. The in-state analysis focused on comparing the pavement sections located in the same state. The two pavement sections located in CA exhibited insignificant variation in thermal cracking, although one of them had an additional 1.5” (38 mm) dense-graded asphaltic concrete (AC) layer. On the other hand, the additional 1.5” (38 mm) AC layer resulted in a significant reduction in the rutting depth in one pavement section. The in-state analysis of the two pavement sections located in NY revealed that the 0.8” (20.4 mm) chip seal layer had significantly low resistance to thermal cracking and rutting. The cross-state analysis examined pavement sections of comparable structural capacities—two with low structural capacity, and two with high structural capacity. The performance comparison of the two pavement sections with low structural capacity revealed that the chip seal layer exhibited a significantly high rutting depth, i.e., low rutting resistance under high traffic loads in a freezing climate. On the contrary, the two pavement sections with high structural capacity showed relatively high rutting resistance in both warmer and freezing climates. Furthermore, this paper presents the pavement deterioration models for rutting and thermal cracking in the LTPP test sections. These models were developed using multiple linear regression considering the pavement service life (age), traffic load (average annual daily truck traffic, AADTT), and climate impact (freezing index, FI). The deterioration models had coefficients of determination (r<sup<2</sup<) in the range of 0.82–0.99 and standard errors varying from 0.01 to 9.92, which indicate that the models are reliable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite pavement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deterioration models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible pavement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-term pavement performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rutting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthew Bauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Md. Safiuddin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohab El-Hakim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Infrastructures</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">7(2022), 8, p 100</subfield><subfield code="w">(DE-627)1015391176</subfield><subfield code="x">24123811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 100</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/infrastructures7080100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/79b2c9db2ce146289a04ef014d9b538e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2412-3811/7/8/100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2412-3811</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 100</subfield></datafield></record></collection>
|
score |
7.401642 |