Extensions of closure spaces
A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite...
Ausführliche Beschreibung
Autor*in: |
D. Deses [verfasserIn] A. de Groot-Van der Voorde [verfasserIn] E. Lowen-Colebunders [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied General Topology - Universitat Politècnica de València, 2013, 4(2003), 2, Seite 223-241 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2003 ; number:2 ; pages:223-241 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.4995/agt.2003.2028 |
---|
Katalog-ID: |
DOAJ036566462 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ036566462 | ||
003 | DE-627 | ||
005 | 20230307232018.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2003 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4995/agt.2003.2028 |2 doi | |
035 | |a (DE-627)DOAJ036566462 | ||
035 | |a (DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a D. Deses |e verfasserin |4 aut | |
245 | 1 | 0 | |a Extensions of closure spaces |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. | ||
650 | 4 | |a Closure space | |
650 | 4 | |a Seminearness | |
650 | 4 | |a Separation | |
650 | 4 | |a Regularity | |
650 | 4 | |a (strict) extension | |
650 | 4 | |a Minimal small stack | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Analysis | |
700 | 0 | |a A. de Groot-Van der Voorde |e verfasserin |4 aut | |
700 | 0 | |a E. Lowen-Colebunders |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied General Topology |d Universitat Politècnica de València, 2013 |g 4(2003), 2, Seite 223-241 |w (DE-627)778376729 |w (DE-600)2756313-3 |x 19894147 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2003 |g number:2 |g pages:223-241 |
856 | 4 | 0 | |u https://doi.org/10.4995/agt.2003.2028 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f |z kostenfrei |
856 | 4 | 0 | |u http://polipapers.upv.es/index.php/AGT/article/view/2028 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1576-9402 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1989-4147 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2003 |e 2 |h 223-241 |
author_variant |
d d dd a d g v d v adgvdv e l c elc |
---|---|
matchkey_str |
article:19894147:2003----::xesosflsr |
hierarchy_sort_str |
2003 |
callnumber-subject-code |
QA |
publishDate |
2003 |
allfields |
10.4995/agt.2003.2028 doi (DE-627)DOAJ036566462 (DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f DE-627 ger DE-627 rakwb eng QA1-939 QA299.6-433 D. Deses verfasserin aut Extensions of closure spaces 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. Closure space Seminearness Separation Regularity (strict) extension Minimal small stack Mathematics Analysis A. de Groot-Van der Voorde verfasserin aut E. Lowen-Colebunders verfasserin aut In Applied General Topology Universitat Politècnica de València, 2013 4(2003), 2, Seite 223-241 (DE-627)778376729 (DE-600)2756313-3 19894147 nnns volume:4 year:2003 number:2 pages:223-241 https://doi.org/10.4995/agt.2003.2028 kostenfrei https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f kostenfrei http://polipapers.upv.es/index.php/AGT/article/view/2028 kostenfrei https://doaj.org/toc/1576-9402 Journal toc kostenfrei https://doaj.org/toc/1989-4147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 2 223-241 |
spelling |
10.4995/agt.2003.2028 doi (DE-627)DOAJ036566462 (DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f DE-627 ger DE-627 rakwb eng QA1-939 QA299.6-433 D. Deses verfasserin aut Extensions of closure spaces 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. Closure space Seminearness Separation Regularity (strict) extension Minimal small stack Mathematics Analysis A. de Groot-Van der Voorde verfasserin aut E. Lowen-Colebunders verfasserin aut In Applied General Topology Universitat Politècnica de València, 2013 4(2003), 2, Seite 223-241 (DE-627)778376729 (DE-600)2756313-3 19894147 nnns volume:4 year:2003 number:2 pages:223-241 https://doi.org/10.4995/agt.2003.2028 kostenfrei https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f kostenfrei http://polipapers.upv.es/index.php/AGT/article/view/2028 kostenfrei https://doaj.org/toc/1576-9402 Journal toc kostenfrei https://doaj.org/toc/1989-4147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 2 223-241 |
allfields_unstemmed |
10.4995/agt.2003.2028 doi (DE-627)DOAJ036566462 (DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f DE-627 ger DE-627 rakwb eng QA1-939 QA299.6-433 D. Deses verfasserin aut Extensions of closure spaces 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. Closure space Seminearness Separation Regularity (strict) extension Minimal small stack Mathematics Analysis A. de Groot-Van der Voorde verfasserin aut E. Lowen-Colebunders verfasserin aut In Applied General Topology Universitat Politècnica de València, 2013 4(2003), 2, Seite 223-241 (DE-627)778376729 (DE-600)2756313-3 19894147 nnns volume:4 year:2003 number:2 pages:223-241 https://doi.org/10.4995/agt.2003.2028 kostenfrei https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f kostenfrei http://polipapers.upv.es/index.php/AGT/article/view/2028 kostenfrei https://doaj.org/toc/1576-9402 Journal toc kostenfrei https://doaj.org/toc/1989-4147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 2 223-241 |
allfieldsGer |
10.4995/agt.2003.2028 doi (DE-627)DOAJ036566462 (DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f DE-627 ger DE-627 rakwb eng QA1-939 QA299.6-433 D. Deses verfasserin aut Extensions of closure spaces 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. Closure space Seminearness Separation Regularity (strict) extension Minimal small stack Mathematics Analysis A. de Groot-Van der Voorde verfasserin aut E. Lowen-Colebunders verfasserin aut In Applied General Topology Universitat Politècnica de València, 2013 4(2003), 2, Seite 223-241 (DE-627)778376729 (DE-600)2756313-3 19894147 nnns volume:4 year:2003 number:2 pages:223-241 https://doi.org/10.4995/agt.2003.2028 kostenfrei https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f kostenfrei http://polipapers.upv.es/index.php/AGT/article/view/2028 kostenfrei https://doaj.org/toc/1576-9402 Journal toc kostenfrei https://doaj.org/toc/1989-4147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 2 223-241 |
allfieldsSound |
10.4995/agt.2003.2028 doi (DE-627)DOAJ036566462 (DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f DE-627 ger DE-627 rakwb eng QA1-939 QA299.6-433 D. Deses verfasserin aut Extensions of closure spaces 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. Closure space Seminearness Separation Regularity (strict) extension Minimal small stack Mathematics Analysis A. de Groot-Van der Voorde verfasserin aut E. Lowen-Colebunders verfasserin aut In Applied General Topology Universitat Politècnica de València, 2013 4(2003), 2, Seite 223-241 (DE-627)778376729 (DE-600)2756313-3 19894147 nnns volume:4 year:2003 number:2 pages:223-241 https://doi.org/10.4995/agt.2003.2028 kostenfrei https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f kostenfrei http://polipapers.upv.es/index.php/AGT/article/view/2028 kostenfrei https://doaj.org/toc/1576-9402 Journal toc kostenfrei https://doaj.org/toc/1989-4147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 2 223-241 |
language |
English |
source |
In Applied General Topology 4(2003), 2, Seite 223-241 volume:4 year:2003 number:2 pages:223-241 |
sourceStr |
In Applied General Topology 4(2003), 2, Seite 223-241 volume:4 year:2003 number:2 pages:223-241 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Closure space Seminearness Separation Regularity (strict) extension Minimal small stack Mathematics Analysis |
isfreeaccess_bool |
true |
container_title |
Applied General Topology |
authorswithroles_txt_mv |
D. Deses @@aut@@ A. de Groot-Van der Voorde @@aut@@ E. Lowen-Colebunders @@aut@@ |
publishDateDaySort_date |
2003-01-01T00:00:00Z |
hierarchy_top_id |
778376729 |
id |
DOAJ036566462 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036566462</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307232018.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2003 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4995/agt.2003.2028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036566462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">D. Deses</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extensions of closure spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closure space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seminearness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(strict) extension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal small stack</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. de Groot-Van der Voorde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E. Lowen-Colebunders</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied General Topology</subfield><subfield code="d">Universitat Politècnica de València, 2013</subfield><subfield code="g">4(2003), 2, Seite 223-241</subfield><subfield code="w">(DE-627)778376729</subfield><subfield code="w">(DE-600)2756313-3</subfield><subfield code="x">19894147</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:223-241</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4995/agt.2003.2028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://polipapers.upv.es/index.php/AGT/article/view/2028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1576-9402</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1989-4147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="h">223-241</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
D. Deses |
spellingShingle |
D. Deses misc QA1-939 misc QA299.6-433 misc Closure space misc Seminearness misc Separation misc Regularity misc (strict) extension misc Minimal small stack misc Mathematics misc Analysis Extensions of closure spaces |
authorStr |
D. Deses |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778376729 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
19894147 |
topic_title |
QA1-939 QA299.6-433 Extensions of closure spaces Closure space Seminearness Separation Regularity (strict) extension Minimal small stack |
topic |
misc QA1-939 misc QA299.6-433 misc Closure space misc Seminearness misc Separation misc Regularity misc (strict) extension misc Minimal small stack misc Mathematics misc Analysis |
topic_unstemmed |
misc QA1-939 misc QA299.6-433 misc Closure space misc Seminearness misc Separation misc Regularity misc (strict) extension misc Minimal small stack misc Mathematics misc Analysis |
topic_browse |
misc QA1-939 misc QA299.6-433 misc Closure space misc Seminearness misc Separation misc Regularity misc (strict) extension misc Minimal small stack misc Mathematics misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied General Topology |
hierarchy_parent_id |
778376729 |
hierarchy_top_title |
Applied General Topology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778376729 (DE-600)2756313-3 |
title |
Extensions of closure spaces |
ctrlnum |
(DE-627)DOAJ036566462 (DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f |
title_full |
Extensions of closure spaces |
author_sort |
D. Deses |
journal |
Applied General Topology |
journalStr |
Applied General Topology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
223 |
author_browse |
D. Deses A. de Groot-Van der Voorde E. Lowen-Colebunders |
container_volume |
4 |
class |
QA1-939 QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
D. Deses |
doi_str_mv |
10.4995/agt.2003.2028 |
author2-role |
verfasserin |
title_sort |
extensions of closure spaces |
callnumber |
QA1-939 |
title_auth |
Extensions of closure spaces |
abstract |
A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. |
abstractGer |
A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. |
abstract_unstemmed |
A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Extensions of closure spaces |
url |
https://doi.org/10.4995/agt.2003.2028 https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f http://polipapers.upv.es/index.php/AGT/article/view/2028 https://doaj.org/toc/1576-9402 https://doaj.org/toc/1989-4147 |
remote_bool |
true |
author2 |
A. de Groot-Van der Voorde E. Lowen-Colebunders |
author2Str |
A. de Groot-Van der Voorde E. Lowen-Colebunders |
ppnlink |
778376729 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.4995/agt.2003.2028 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T21:18:30.343Z |
_version_ |
1803594246751518720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036566462</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307232018.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2003 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4995/agt.2003.2028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036566462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6fec103136ec43d484a2d0ab736fc17f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">D. Deses</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extensions of closure spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closure space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seminearness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(strict) extension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal small stack</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. de Groot-Van der Voorde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E. Lowen-Colebunders</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied General Topology</subfield><subfield code="d">Universitat Politècnica de València, 2013</subfield><subfield code="g">4(2003), 2, Seite 223-241</subfield><subfield code="w">(DE-627)778376729</subfield><subfield code="w">(DE-600)2756313-3</subfield><subfield code="x">19894147</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:223-241</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4995/agt.2003.2028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6fec103136ec43d484a2d0ab736fc17f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://polipapers.upv.es/index.php/AGT/article/view/2028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1576-9402</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1989-4147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="h">223-241</subfield></datafield></record></collection>
|
score |
7.399967 |