Log-concavity in some parabolic problems
We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the dom...
Ausführliche Beschreibung
Autor*in: |
Antonio Greco [verfasserIn] Bernd Kawohl [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronic Journal of Differential Equations - Texas State University, 2003, (1999), 19, Seite 12 |
---|---|
Übergeordnetes Werk: |
year:1999 ; number:19 ; pages:12 |
Links: |
---|
Katalog-ID: |
DOAJ03661968X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ03661968X | ||
003 | DE-627 | ||
005 | 20230502100704.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s1999 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ03661968X | ||
035 | |a (DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Antonio Greco |e verfasserin |4 aut | |
245 | 1 | 0 | |a Log-concavity in some parabolic problems |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. | ||
650 | 4 | |a Concavity maximum principle | |
650 | 4 | |a Log-concavity | |
650 | 4 | |a Parabolic equation. | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Bernd Kawohl |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronic Journal of Differential Equations |d Texas State University, 2003 |g (1999), 19, Seite 12 |w (DE-627)320518205 |w (DE-600)2014226-2 |x 10726691 |7 nnns |
773 | 1 | 8 | |g year:1999 |g number:19 |g pages:12 |
856 | 4 | 0 | |u https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3 |z kostenfrei |
856 | 4 | 0 | |u http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1072-6691 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 1999 |e 19 |h 12 |
author_variant |
a g ag b k bk |
---|---|
matchkey_str |
article:10726691:1999----::ocnaiynoeaao |
hierarchy_sort_str |
1999 |
callnumber-subject-code |
QA |
publishDate |
1999 |
allfields |
(DE-627)DOAJ03661968X (DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3 DE-627 ger DE-627 rakwb eng QA1-939 Antonio Greco verfasserin aut Log-concavity in some parabolic problems 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. Concavity maximum principle Log-concavity Parabolic equation. Mathematics Bernd Kawohl verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (1999), 19, Seite 12 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:1999 number:19 pages:12 https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3 kostenfrei http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1999 19 12 |
spelling |
(DE-627)DOAJ03661968X (DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3 DE-627 ger DE-627 rakwb eng QA1-939 Antonio Greco verfasserin aut Log-concavity in some parabolic problems 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. Concavity maximum principle Log-concavity Parabolic equation. Mathematics Bernd Kawohl verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (1999), 19, Seite 12 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:1999 number:19 pages:12 https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3 kostenfrei http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1999 19 12 |
allfields_unstemmed |
(DE-627)DOAJ03661968X (DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3 DE-627 ger DE-627 rakwb eng QA1-939 Antonio Greco verfasserin aut Log-concavity in some parabolic problems 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. Concavity maximum principle Log-concavity Parabolic equation. Mathematics Bernd Kawohl verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (1999), 19, Seite 12 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:1999 number:19 pages:12 https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3 kostenfrei http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1999 19 12 |
allfieldsGer |
(DE-627)DOAJ03661968X (DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3 DE-627 ger DE-627 rakwb eng QA1-939 Antonio Greco verfasserin aut Log-concavity in some parabolic problems 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. Concavity maximum principle Log-concavity Parabolic equation. Mathematics Bernd Kawohl verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (1999), 19, Seite 12 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:1999 number:19 pages:12 https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3 kostenfrei http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1999 19 12 |
allfieldsSound |
(DE-627)DOAJ03661968X (DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3 DE-627 ger DE-627 rakwb eng QA1-939 Antonio Greco verfasserin aut Log-concavity in some parabolic problems 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. Concavity maximum principle Log-concavity Parabolic equation. Mathematics Bernd Kawohl verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (1999), 19, Seite 12 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:1999 number:19 pages:12 https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3 kostenfrei http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1999 19 12 |
language |
English |
source |
In Electronic Journal of Differential Equations (1999), 19, Seite 12 year:1999 number:19 pages:12 |
sourceStr |
In Electronic Journal of Differential Equations (1999), 19, Seite 12 year:1999 number:19 pages:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Concavity maximum principle Log-concavity Parabolic equation. Mathematics |
isfreeaccess_bool |
true |
container_title |
Electronic Journal of Differential Equations |
authorswithroles_txt_mv |
Antonio Greco @@aut@@ Bernd Kawohl @@aut@@ |
publishDateDaySort_date |
1999-01-01T00:00:00Z |
hierarchy_top_id |
320518205 |
id |
DOAJ03661968X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03661968X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502100704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03661968X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Antonio Greco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Log-concavity in some parabolic problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concavity maximum principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log-concavity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic equation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bernd Kawohl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(1999), 19, Seite 12</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:1999</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">1999</subfield><subfield code="e">19</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Antonio Greco |
spellingShingle |
Antonio Greco misc QA1-939 misc Concavity maximum principle misc Log-concavity misc Parabolic equation. misc Mathematics Log-concavity in some parabolic problems |
authorStr |
Antonio Greco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320518205 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
10726691 |
topic_title |
QA1-939 Log-concavity in some parabolic problems Concavity maximum principle Log-concavity Parabolic equation |
topic |
misc QA1-939 misc Concavity maximum principle misc Log-concavity misc Parabolic equation. misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Concavity maximum principle misc Log-concavity misc Parabolic equation. misc Mathematics |
topic_browse |
misc QA1-939 misc Concavity maximum principle misc Log-concavity misc Parabolic equation. misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronic Journal of Differential Equations |
hierarchy_parent_id |
320518205 |
hierarchy_top_title |
Electronic Journal of Differential Equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320518205 (DE-600)2014226-2 |
title |
Log-concavity in some parabolic problems |
ctrlnum |
(DE-627)DOAJ03661968X (DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3 |
title_full |
Log-concavity in some parabolic problems |
author_sort |
Antonio Greco |
journal |
Electronic Journal of Differential Equations |
journalStr |
Electronic Journal of Differential Equations |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
12 |
author_browse |
Antonio Greco Bernd Kawohl |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Antonio Greco |
author2-role |
verfasserin |
title_sort |
log-concavity in some parabolic problems |
callnumber |
QA1-939 |
title_auth |
Log-concavity in some parabolic problems |
abstract |
We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. |
abstractGer |
We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. |
abstract_unstemmed |
We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
19 |
title_short |
Log-concavity in some parabolic problems |
url |
https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3 http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html https://doaj.org/toc/1072-6691 |
remote_bool |
true |
author2 |
Bernd Kawohl |
author2Str |
Bernd Kawohl |
ppnlink |
320518205 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T21:36:12.447Z |
_version_ |
1803595360447234048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03661968X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502100704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03661968X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeb18fe0a6c564de88ca1647ba7f5aac3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Antonio Greco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Log-concavity in some parabolic problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We improve a concavity maximum principle for parabolic equations of the second order, which was initially established by Korevaar, and then we use this result to investigate some boundary value problems. In particular, we find structural conditions on the equation, and suitable conditions on the domain of the problem and on the boundary data, that suffice to yield spatial log-concavity of the (positive) solution. Examples and applications are provided, and some unsolved problems are pointed out. We also survey some classical as well as recent contributions to the subject.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concavity maximum principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log-concavity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic equation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bernd Kawohl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(1999), 19, Seite 12</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:1999</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eb18fe0a6c564de88ca1647ba7f5aac3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/1999/19/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">1999</subfield><subfield code="e">19</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
score |
7.4017286 |