Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study
The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (...
Ausführliche Beschreibung
Autor*in: |
Xianxi Bai [verfasserIn] Anye Cao [verfasserIn] Wu Cai [verfasserIn] Yingyuan Wen [verfasserIn] Yaoqi Liu [verfasserIn] Songwei Wang [verfasserIn] Xuwei Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Geomatics, Natural Hazards & Risk - Taylor & Francis Group, 2016, 13(2022), 1, Seite 1805-1830 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 ; number:1 ; pages:1805-1830 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/19475705.2022.2100832 |
---|
Katalog-ID: |
DOAJ036755818 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ036755818 | ||
003 | DE-627 | ||
005 | 20230307233215.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/19475705.2022.2100832 |2 doi | |
035 | |a (DE-627)DOAJ036755818 | ||
035 | |a (DE-599)DOAJffb53488243644a9b515e15528c4cb2d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Xianxi Bai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. | ||
650 | 4 | |a Roof thickness variation | |
650 | 4 | |a rock burst mechanism | |
650 | 4 | |a numerical modeling | |
650 | 4 | |a case analysis | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
653 | 0 | |a Environmental sciences | |
653 | 0 | |a Risk in industry. Risk management | |
653 | 0 | |a HD61 | |
700 | 0 | |a Anye Cao |e verfasserin |4 aut | |
700 | 0 | |a Wu Cai |e verfasserin |4 aut | |
700 | 0 | |a Yingyuan Wen |e verfasserin |4 aut | |
700 | 0 | |a Yaoqi Liu |e verfasserin |4 aut | |
700 | 0 | |a Songwei Wang |e verfasserin |4 aut | |
700 | 0 | |a Xuwei Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geomatics, Natural Hazards & Risk |d Taylor & Francis Group, 2016 |g 13(2022), 1, Seite 1805-1830 |w (DE-627)626457491 |w (DE-600)2553648-5 |x 19475713 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |g number:1 |g pages:1805-1830 |
856 | 4 | 0 | |u https://doi.org/10.1080/19475705.2022.2100832 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d |z kostenfrei |
856 | 4 | 0 | |u https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1947-5705 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1947-5713 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |e 1 |h 1805-1830 |
author_variant |
x b xb a c ac w c wc y w yw y l yl s w sw x l xl |
---|---|
matchkey_str |
article:19475713:2022----::okusmcaimnuebsrsaoaynofhcnsv |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TD |
publishDate |
2022 |
allfields |
10.1080/19475705.2022.2100832 doi (DE-627)DOAJ036755818 (DE-599)DOAJffb53488243644a9b515e15528c4cb2d DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xianxi Bai verfasserin aut Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. Roof thickness variation rock burst mechanism numerical modeling case analysis Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Anye Cao verfasserin aut Wu Cai verfasserin aut Yingyuan Wen verfasserin aut Yaoqi Liu verfasserin aut Songwei Wang verfasserin aut Xuwei Li verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 13(2022), 1, Seite 1805-1830 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:13 year:2022 number:1 pages:1805-1830 https://doi.org/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d kostenfrei https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 1805-1830 |
spelling |
10.1080/19475705.2022.2100832 doi (DE-627)DOAJ036755818 (DE-599)DOAJffb53488243644a9b515e15528c4cb2d DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xianxi Bai verfasserin aut Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. Roof thickness variation rock burst mechanism numerical modeling case analysis Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Anye Cao verfasserin aut Wu Cai verfasserin aut Yingyuan Wen verfasserin aut Yaoqi Liu verfasserin aut Songwei Wang verfasserin aut Xuwei Li verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 13(2022), 1, Seite 1805-1830 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:13 year:2022 number:1 pages:1805-1830 https://doi.org/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d kostenfrei https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 1805-1830 |
allfields_unstemmed |
10.1080/19475705.2022.2100832 doi (DE-627)DOAJ036755818 (DE-599)DOAJffb53488243644a9b515e15528c4cb2d DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xianxi Bai verfasserin aut Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. Roof thickness variation rock burst mechanism numerical modeling case analysis Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Anye Cao verfasserin aut Wu Cai verfasserin aut Yingyuan Wen verfasserin aut Yaoqi Liu verfasserin aut Songwei Wang verfasserin aut Xuwei Li verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 13(2022), 1, Seite 1805-1830 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:13 year:2022 number:1 pages:1805-1830 https://doi.org/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d kostenfrei https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 1805-1830 |
allfieldsGer |
10.1080/19475705.2022.2100832 doi (DE-627)DOAJ036755818 (DE-599)DOAJffb53488243644a9b515e15528c4cb2d DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xianxi Bai verfasserin aut Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. Roof thickness variation rock burst mechanism numerical modeling case analysis Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Anye Cao verfasserin aut Wu Cai verfasserin aut Yingyuan Wen verfasserin aut Yaoqi Liu verfasserin aut Songwei Wang verfasserin aut Xuwei Li verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 13(2022), 1, Seite 1805-1830 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:13 year:2022 number:1 pages:1805-1830 https://doi.org/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d kostenfrei https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 1805-1830 |
allfieldsSound |
10.1080/19475705.2022.2100832 doi (DE-627)DOAJ036755818 (DE-599)DOAJffb53488243644a9b515e15528c4cb2d DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xianxi Bai verfasserin aut Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. Roof thickness variation rock burst mechanism numerical modeling case analysis Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Anye Cao verfasserin aut Wu Cai verfasserin aut Yingyuan Wen verfasserin aut Yaoqi Liu verfasserin aut Songwei Wang verfasserin aut Xuwei Li verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 13(2022), 1, Seite 1805-1830 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:13 year:2022 number:1 pages:1805-1830 https://doi.org/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d kostenfrei https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 1805-1830 |
language |
English |
source |
In Geomatics, Natural Hazards & Risk 13(2022), 1, Seite 1805-1830 volume:13 year:2022 number:1 pages:1805-1830 |
sourceStr |
In Geomatics, Natural Hazards & Risk 13(2022), 1, Seite 1805-1830 volume:13 year:2022 number:1 pages:1805-1830 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Roof thickness variation rock burst mechanism numerical modeling case analysis Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 |
isfreeaccess_bool |
true |
container_title |
Geomatics, Natural Hazards & Risk |
authorswithroles_txt_mv |
Xianxi Bai @@aut@@ Anye Cao @@aut@@ Wu Cai @@aut@@ Yingyuan Wen @@aut@@ Yaoqi Liu @@aut@@ Songwei Wang @@aut@@ Xuwei Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
626457491 |
id |
DOAJ036755818 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036755818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307233215.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/19475705.2022.2100832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036755818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJffb53488243644a9b515e15528c4cb2d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xianxi Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roof thickness variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rock burst mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">case analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Risk in industry. Risk management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">HD61</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anye Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wu Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingyuan Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoqi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Songwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuwei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geomatics, Natural Hazards & Risk</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">13(2022), 1, Seite 1805-1830</subfield><subfield code="w">(DE-627)626457491</subfield><subfield code="w">(DE-600)2553648-5</subfield><subfield code="x">19475713</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1805-1830</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/19475705.2022.2100832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5705</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5713</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">1805-1830</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xianxi Bai |
spellingShingle |
Xianxi Bai misc TD1-1066 misc GE1-350 misc Roof thickness variation misc rock burst mechanism misc numerical modeling misc case analysis misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study |
authorStr |
Xianxi Bai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)626457491 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
19475713 |
topic_title |
TD1-1066 GE1-350 Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study Roof thickness variation rock burst mechanism numerical modeling case analysis |
topic |
misc TD1-1066 misc GE1-350 misc Roof thickness variation misc rock burst mechanism misc numerical modeling misc case analysis misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 |
topic_unstemmed |
misc TD1-1066 misc GE1-350 misc Roof thickness variation misc rock burst mechanism misc numerical modeling misc case analysis misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 |
topic_browse |
misc TD1-1066 misc GE1-350 misc Roof thickness variation misc rock burst mechanism misc numerical modeling misc case analysis misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geomatics, Natural Hazards & Risk |
hierarchy_parent_id |
626457491 |
hierarchy_top_title |
Geomatics, Natural Hazards & Risk |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)626457491 (DE-600)2553648-5 |
title |
Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study |
ctrlnum |
(DE-627)DOAJ036755818 (DE-599)DOAJffb53488243644a9b515e15528c4cb2d |
title_full |
Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study |
author_sort |
Xianxi Bai |
journal |
Geomatics, Natural Hazards & Risk |
journalStr |
Geomatics, Natural Hazards & Risk |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1805 |
author_browse |
Xianxi Bai Anye Cao Wu Cai Yingyuan Wen Yaoqi Liu Songwei Wang Xuwei Li |
container_volume |
13 |
class |
TD1-1066 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Xianxi Bai |
doi_str_mv |
10.1080/19475705.2022.2100832 |
author2-role |
verfasserin |
title_sort |
rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study |
callnumber |
TD1-1066 |
title_auth |
Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study |
abstract |
The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. |
abstractGer |
The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. |
abstract_unstemmed |
The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study |
url |
https://doi.org/10.1080/19475705.2022.2100832 https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832 https://doaj.org/toc/1947-5705 https://doaj.org/toc/1947-5713 |
remote_bool |
true |
author2 |
Anye Cao Wu Cai Yingyuan Wen Yaoqi Liu Songwei Wang Xuwei Li |
author2Str |
Anye Cao Wu Cai Yingyuan Wen Yaoqi Liu Songwei Wang Xuwei Li |
ppnlink |
626457491 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/19475705.2022.2100832 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-03T22:18:57.590Z |
_version_ |
1803598050193571840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ036755818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307233215.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/19475705.2022.2100832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ036755818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJffb53488243644a9b515e15528c4cb2d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xianxi Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rock burst mechanism induced by stress anomaly in roof thickness variation zone: a case study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The variation of hard roof thickness is an essential contributor in triggering rock bursts during longwall mining. Case analysis and numerical modeling were used to study the stress and energy characteristics of the coal and rock mass and its fracture behaviour in the roof thickness variation zone (RTVZ). The results show that the coal seam has higher initial stress if overlain by a thicker hard roof, whose stress monitoring value is 1.8–2.6 times that of the thin zone. The increasing variation in the roof thickness or the roof properties causes a greater initial stress change in the coal seam. In the thick roof zones, the superposition of the advanced abutment pressure and the increased initial stress will result in a high-stress concentration area, where the stress mutation coefficient value can be up to 1.08–1.15. A higher rock burst risk might thus present in the roadway near the longwall in the thick roof zone, where more intensive elastic energy was released in the coal/rock mass. Also, it is more likely to have a significant dynamic load in the thin roof zone due to the higher possibility of roof breakage, and the total microseismic energy can reach 1.8–3.2E + 08J. HighlightsCase analysis and numerical modelling were used to study the formation mechanism of stress anomaly in coal seams, energy evolution characteristics of the coal/rock mass and its fracture behaviour in the RTVZ.The mechanism of rock bursts induced by coal mining in the RTVZ is determined. The thick roof zone has high-stress concentration, where more intensive elastic energy is released in the coal/rock mass. Due to easier roof breakage, it is more likely to have a significant dynamic load in the thin roof zone.The prevention and control method of rock bursts in the RTVZ is put forward. The rock bursts can be relieved by reducing the initial stress increased in the thick roof zone. Strengthening roadway support can reduce the influence of dynamic load on the roadway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roof thickness variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rock burst mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">case analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Risk in industry. Risk management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">HD61</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anye Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wu Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingyuan Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoqi Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Songwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuwei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geomatics, Natural Hazards & Risk</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">13(2022), 1, Seite 1805-1830</subfield><subfield code="w">(DE-627)626457491</subfield><subfield code="w">(DE-600)2553648-5</subfield><subfield code="x">19475713</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1805-1830</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/19475705.2022.2100832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ffb53488243644a9b515e15528c4cb2d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/19475705.2022.2100832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5705</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5713</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">1805-1830</subfield></datafield></record></collection>
|
score |
7.40189 |