Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem
Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on...
Ausführliche Beschreibung
Autor*in: |
Stefano Liccioli [verfasserIn] Tara Stephens [verfasserIn] Sian C. Wilson [verfasserIn] Jana M. McPherson [verfasserIn] Laura M. Keating [verfasserIn] Kym S. Antonation [verfasserIn] Trent K. Bollinger [verfasserIn] Cindi R. Corbett [verfasserIn] David L. Gummer [verfasserIn] L. Robbin Lindsay [verfasserIn] Terry D. Galloway [verfasserIn] Todd K. Shury [verfasserIn] Axel Moehrenschlager [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecosphere - Wiley, 2016, 11(2020), 5, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2020 ; number:5 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1002/ecs2.3138 |
---|
Katalog-ID: |
DOAJ037613065 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ037613065 | ||
003 | DE-627 | ||
005 | 20230308011846.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/ecs2.3138 |2 doi | |
035 | |a (DE-627)DOAJ037613065 | ||
035 | |a (DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Stefano Liccioli |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. | ||
650 | 4 | |a burrow swabbing | |
650 | 4 | |a Canada | |
650 | 4 | |a climate change | |
650 | 4 | |a Cynomys ludovicianus | |
650 | 4 | |a Grasslands National Park | |
650 | 4 | |a health | |
653 | 0 | |a Ecology | |
700 | 0 | |a Tara Stephens |e verfasserin |4 aut | |
700 | 0 | |a Sian C. Wilson |e verfasserin |4 aut | |
700 | 0 | |a Jana M. McPherson |e verfasserin |4 aut | |
700 | 0 | |a Laura M. Keating |e verfasserin |4 aut | |
700 | 0 | |a Kym S. Antonation |e verfasserin |4 aut | |
700 | 0 | |a Trent K. Bollinger |e verfasserin |4 aut | |
700 | 0 | |a Cindi R. Corbett |e verfasserin |4 aut | |
700 | 0 | |a David L. Gummer |e verfasserin |4 aut | |
700 | 0 | |a L. Robbin Lindsay |e verfasserin |4 aut | |
700 | 0 | |a Terry D. Galloway |e verfasserin |4 aut | |
700 | 0 | |a Todd K. Shury |e verfasserin |4 aut | |
700 | 0 | |a Axel Moehrenschlager |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecosphere |d Wiley, 2016 |g 11(2020), 5, Seite n/a-n/a |w (DE-627)635133679 |w (DE-600)2572257-8 |x 21508925 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2020 |g number:5 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/ecs2.3138 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/ecs2.3138 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2150-8925 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2020 |e 5 |h n/a-n/a |
author_variant |
s l sl t s ts s c w scw j m m jmm l m k lmk k s a ksa t k b tkb c r c crc d l g dlg l r l lrl t d g tdg t k s tks a m am |
---|---|
matchkey_str |
article:21508925:2020----::notcaneacoslaipauicndshetndlcti |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QH |
publishDate |
2020 |
allfields |
10.1002/ecs2.3138 doi (DE-627)DOAJ037613065 (DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf DE-627 ger DE-627 rakwb eng QH540-549.5 Stefano Liccioli verfasserin aut Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. burrow swabbing Canada climate change Cynomys ludovicianus Grasslands National Park health Ecology Tara Stephens verfasserin aut Sian C. Wilson verfasserin aut Jana M. McPherson verfasserin aut Laura M. Keating verfasserin aut Kym S. Antonation verfasserin aut Trent K. Bollinger verfasserin aut Cindi R. Corbett verfasserin aut David L. Gummer verfasserin aut L. Robbin Lindsay verfasserin aut Terry D. Galloway verfasserin aut Todd K. Shury verfasserin aut Axel Moehrenschlager verfasserin aut In Ecosphere Wiley, 2016 11(2020), 5, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:5 pages:n/a-n/a https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf kostenfrei https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 5 n/a-n/a |
spelling |
10.1002/ecs2.3138 doi (DE-627)DOAJ037613065 (DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf DE-627 ger DE-627 rakwb eng QH540-549.5 Stefano Liccioli verfasserin aut Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. burrow swabbing Canada climate change Cynomys ludovicianus Grasslands National Park health Ecology Tara Stephens verfasserin aut Sian C. Wilson verfasserin aut Jana M. McPherson verfasserin aut Laura M. Keating verfasserin aut Kym S. Antonation verfasserin aut Trent K. Bollinger verfasserin aut Cindi R. Corbett verfasserin aut David L. Gummer verfasserin aut L. Robbin Lindsay verfasserin aut Terry D. Galloway verfasserin aut Todd K. Shury verfasserin aut Axel Moehrenschlager verfasserin aut In Ecosphere Wiley, 2016 11(2020), 5, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:5 pages:n/a-n/a https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf kostenfrei https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 5 n/a-n/a |
allfields_unstemmed |
10.1002/ecs2.3138 doi (DE-627)DOAJ037613065 (DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf DE-627 ger DE-627 rakwb eng QH540-549.5 Stefano Liccioli verfasserin aut Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. burrow swabbing Canada climate change Cynomys ludovicianus Grasslands National Park health Ecology Tara Stephens verfasserin aut Sian C. Wilson verfasserin aut Jana M. McPherson verfasserin aut Laura M. Keating verfasserin aut Kym S. Antonation verfasserin aut Trent K. Bollinger verfasserin aut Cindi R. Corbett verfasserin aut David L. Gummer verfasserin aut L. Robbin Lindsay verfasserin aut Terry D. Galloway verfasserin aut Todd K. Shury verfasserin aut Axel Moehrenschlager verfasserin aut In Ecosphere Wiley, 2016 11(2020), 5, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:5 pages:n/a-n/a https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf kostenfrei https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 5 n/a-n/a |
allfieldsGer |
10.1002/ecs2.3138 doi (DE-627)DOAJ037613065 (DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf DE-627 ger DE-627 rakwb eng QH540-549.5 Stefano Liccioli verfasserin aut Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. burrow swabbing Canada climate change Cynomys ludovicianus Grasslands National Park health Ecology Tara Stephens verfasserin aut Sian C. Wilson verfasserin aut Jana M. McPherson verfasserin aut Laura M. Keating verfasserin aut Kym S. Antonation verfasserin aut Trent K. Bollinger verfasserin aut Cindi R. Corbett verfasserin aut David L. Gummer verfasserin aut L. Robbin Lindsay verfasserin aut Terry D. Galloway verfasserin aut Todd K. Shury verfasserin aut Axel Moehrenschlager verfasserin aut In Ecosphere Wiley, 2016 11(2020), 5, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:5 pages:n/a-n/a https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf kostenfrei https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 5 n/a-n/a |
allfieldsSound |
10.1002/ecs2.3138 doi (DE-627)DOAJ037613065 (DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf DE-627 ger DE-627 rakwb eng QH540-549.5 Stefano Liccioli verfasserin aut Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. burrow swabbing Canada climate change Cynomys ludovicianus Grasslands National Park health Ecology Tara Stephens verfasserin aut Sian C. Wilson verfasserin aut Jana M. McPherson verfasserin aut Laura M. Keating verfasserin aut Kym S. Antonation verfasserin aut Trent K. Bollinger verfasserin aut Cindi R. Corbett verfasserin aut David L. Gummer verfasserin aut L. Robbin Lindsay verfasserin aut Terry D. Galloway verfasserin aut Todd K. Shury verfasserin aut Axel Moehrenschlager verfasserin aut In Ecosphere Wiley, 2016 11(2020), 5, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:5 pages:n/a-n/a https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf kostenfrei https://doi.org/10.1002/ecs2.3138 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 5 n/a-n/a |
language |
English |
source |
In Ecosphere 11(2020), 5, Seite n/a-n/a volume:11 year:2020 number:5 pages:n/a-n/a |
sourceStr |
In Ecosphere 11(2020), 5, Seite n/a-n/a volume:11 year:2020 number:5 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
burrow swabbing Canada climate change Cynomys ludovicianus Grasslands National Park health Ecology |
isfreeaccess_bool |
true |
container_title |
Ecosphere |
authorswithroles_txt_mv |
Stefano Liccioli @@aut@@ Tara Stephens @@aut@@ Sian C. Wilson @@aut@@ Jana M. McPherson @@aut@@ Laura M. Keating @@aut@@ Kym S. Antonation @@aut@@ Trent K. Bollinger @@aut@@ Cindi R. Corbett @@aut@@ David L. Gummer @@aut@@ L. Robbin Lindsay @@aut@@ Terry D. Galloway @@aut@@ Todd K. Shury @@aut@@ Axel Moehrenschlager @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
635133679 |
id |
DOAJ037613065 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ037613065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308011846.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ecs2.3138</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ037613065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stefano Liccioli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">burrow swabbing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canada</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cynomys ludovicianus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grasslands National Park</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">health</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tara Stephens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sian C. Wilson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jana M. McPherson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura M. Keating</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kym S. Antonation</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Trent K. Bollinger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cindi R. Corbett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David L. Gummer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">L. Robbin Lindsay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Terry D. Galloway</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Todd K. Shury</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Axel Moehrenschlager</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecosphere</subfield><subfield code="d">Wiley, 2016</subfield><subfield code="g">11(2020), 5, Seite n/a-n/a</subfield><subfield code="w">(DE-627)635133679</subfield><subfield code="w">(DE-600)2572257-8</subfield><subfield code="x">21508925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3138</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3138</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-8925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Stefano Liccioli |
spellingShingle |
Stefano Liccioli misc QH540-549.5 misc burrow swabbing misc Canada misc climate change misc Cynomys ludovicianus misc Grasslands National Park misc health misc Ecology Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem |
authorStr |
Stefano Liccioli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)635133679 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
21508925 |
topic_title |
QH540-549.5 Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem burrow swabbing Canada climate change Cynomys ludovicianus Grasslands National Park health |
topic |
misc QH540-549.5 misc burrow swabbing misc Canada misc climate change misc Cynomys ludovicianus misc Grasslands National Park misc health misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc burrow swabbing misc Canada misc climate change misc Cynomys ludovicianus misc Grasslands National Park misc health misc Ecology |
topic_browse |
misc QH540-549.5 misc burrow swabbing misc Canada misc climate change misc Cynomys ludovicianus misc Grasslands National Park misc health misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecosphere |
hierarchy_parent_id |
635133679 |
hierarchy_top_title |
Ecosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)635133679 (DE-600)2572257-8 |
title |
Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem |
ctrlnum |
(DE-627)DOAJ037613065 (DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf |
title_full |
Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem |
author_sort |
Stefano Liccioli |
journal |
Ecosphere |
journalStr |
Ecosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Stefano Liccioli Tara Stephens Sian C. Wilson Jana M. McPherson Laura M. Keating Kym S. Antonation Trent K. Bollinger Cindi R. Corbett David L. Gummer L. Robbin Lindsay Terry D. Galloway Todd K. Shury Axel Moehrenschlager |
container_volume |
11 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Stefano Liccioli |
doi_str_mv |
10.1002/ecs2.3138 |
author2-role |
verfasserin |
title_sort |
enzootic maintenance of sylvatic plague in canada's threatened black‐tailed prairie dog ecosystem |
callnumber |
QH540-549.5 |
title_auth |
Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem |
abstract |
Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. |
abstractGer |
Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. |
abstract_unstemmed |
Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem |
url |
https://doi.org/10.1002/ecs2.3138 https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf https://doaj.org/toc/2150-8925 |
remote_bool |
true |
author2 |
Tara Stephens Sian C. Wilson Jana M. McPherson Laura M. Keating Kym S. Antonation Trent K. Bollinger Cindi R. Corbett David L. Gummer L. Robbin Lindsay Terry D. Galloway Todd K. Shury Axel Moehrenschlager |
author2Str |
Tara Stephens Sian C. Wilson Jana M. McPherson Laura M. Keating Kym S. Antonation Trent K. Bollinger Cindi R. Corbett David L. Gummer L. Robbin Lindsay Terry D. Galloway Todd K. Shury Axel Moehrenschlager |
ppnlink |
635133679 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/ecs2.3138 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-04T01:52:24.688Z |
_version_ |
1803611479411261440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ037613065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308011846.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ecs2.3138</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ037613065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcd3e2302e3b2461db78f820c1dddb6bf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stefano Liccioli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enzootic maintenance of sylvatic plague in Canada's threatened black‐tailed prairie dog ecosystem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Data paucity can seem to hinder science‐based approaches to the conservation of imperiled species. Yet, even individually limited datasets can improve understanding and management of complex ecological systems when carefully integrated. We demonstrate this approach to gain first insights on the transmission ecology of Yersinia pestis in Grasslands National Park (GNP), Canada, where both the bacterium and its rodent host, the nationally threatened black‐tailed prairie dog (BTPD, Cynomys ludovicianus), reach the northern limit of their distribution in North America. Primarily flea‐borne, Y. pestis causes sylvatic plague, a disease of exceptional relevance to both human health and wildlife conservation. We integrated data collected independently by multiple organizations in 2010–2017 across 17 BTPD colonies, where the species co‐occur with Richardson's ground squirrels (RGS, Urocitellus richardsonii). Available data included estimates of BTPD density and occupancy from visual counts and colony mapping; information on flea distribution, abundance, and prevalence of infection with Y. pestis from burrow swabbing, animal combing, and PCR assays; and the response of these variables to deltamethrin application on BTPD colony sections. Our analyses suggest that sylvatic plague in GNP is maintained at an enzootic level (i.e., chronic presence affecting a low proportion of individuals) with no evidence of widespread mortality, at least partially due to reduced flea activity after spring (percentage of prevalence in burrows: April–May = 11.69–33.89%; June–September: 1.75–3.19%), low prevalence of Y. pestis in flea samples (95% CI = 0.42–2.27%), and relatively low BTPD densities. Nonetheless, reducing flea prevalence through insecticide application had a positive effect on BTPD abundance, suggesting that enzootic plague is causing chronic mortality. Because flea prevalence on hosts was higher following drier years and higher on RGS than on BTPD (26.69% vs. 3.27%), insecticide application may be particularly important during dry periods and may need to take RGS and their movements into consideration. Differences between flea communities sampled by burrow swabbing and host combing suggest that plague surveillance should integrate both methods. Effects of projected climate change on vector life cycles, flea community composition, and host–parasite interactions warrant continued monitoring and an adaptive approach to species recovery actions and plague mitigation measures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">burrow swabbing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canada</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cynomys ludovicianus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grasslands National Park</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">health</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tara Stephens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sian C. Wilson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jana M. McPherson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura M. Keating</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kym S. Antonation</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Trent K. Bollinger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cindi R. Corbett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David L. Gummer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">L. Robbin Lindsay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Terry D. Galloway</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Todd K. Shury</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Axel Moehrenschlager</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecosphere</subfield><subfield code="d">Wiley, 2016</subfield><subfield code="g">11(2020), 5, Seite n/a-n/a</subfield><subfield code="w">(DE-627)635133679</subfield><subfield code="w">(DE-600)2572257-8</subfield><subfield code="x">21508925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3138</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cd3e2302e3b2461db78f820c1dddb6bf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3138</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-8925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.402135 |