Reconstructing the history of helminth prevalence in the UK
Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into hist...
Ausführliche Beschreibung
Autor*in: |
Hannah Ryan [verfasserIn] Patrik G Flammer [verfasserIn] Rebecca Nicholson [verfasserIn] Louise Loe [verfasserIn] Ben Reeves [verfasserIn] Enid Allison [verfasserIn] Christopher Guy [verfasserIn] Inés Lopez Doriga [verfasserIn] Tony Waldron [verfasserIn] Don Walker [verfasserIn] Claas Kirchhelle [verfasserIn] Greger Larson [verfasserIn] Adrian L Smith [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: PLoS Neglected Tropical Diseases - Public Library of Science (PLoS), 2008, 16(2022), 4 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2022 ; number:4 |
Links: |
---|
Katalog-ID: |
DOAJ037658883 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ037658883 | ||
003 | DE-627 | ||
005 | 20230308012217.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ037658883 | ||
035 | |a (DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC955-962 | |
050 | 0 | |a RA1-1270 | |
100 | 0 | |a Hannah Ryan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reconstructing the history of helminth prevalence in the UK |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. | ||
653 | 0 | |a Arctic medicine. Tropical medicine | |
653 | 0 | |a Public aspects of medicine | |
700 | 0 | |a Patrik G Flammer |e verfasserin |4 aut | |
700 | 0 | |a Rebecca Nicholson |e verfasserin |4 aut | |
700 | 0 | |a Louise Loe |e verfasserin |4 aut | |
700 | 0 | |a Ben Reeves |e verfasserin |4 aut | |
700 | 0 | |a Enid Allison |e verfasserin |4 aut | |
700 | 0 | |a Christopher Guy |e verfasserin |4 aut | |
700 | 0 | |a Inés Lopez Doriga |e verfasserin |4 aut | |
700 | 0 | |a Tony Waldron |e verfasserin |4 aut | |
700 | 0 | |a Don Walker |e verfasserin |4 aut | |
700 | 0 | |a Claas Kirchhelle |e verfasserin |4 aut | |
700 | 0 | |a Greger Larson |e verfasserin |4 aut | |
700 | 0 | |a Adrian L Smith |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS Neglected Tropical Diseases |d Public Library of Science (PLoS), 2008 |g 16(2022), 4 |w (DE-627)568915356 |w (DE-600)2429704-5 |x 19352735 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2022 |g number:4 |
856 | 4 | 0 | |u https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993 |z kostenfrei |
856 | 4 | 0 | |u https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1935-2727 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1935-2735 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2022 |e 4 |
author_variant |
h r hr p g f pgf r n rn l l ll b r br e a ea c g cg i l d ild t w tw d w dw c k ck g l gl a l s als |
---|---|
matchkey_str |
article:19352735:2022----::eosrcighhsoyfemnhr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RC |
publishDate |
2022 |
allfields |
(DE-627)DOAJ037658883 (DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993 DE-627 ger DE-627 rakwb eng RC955-962 RA1-1270 Hannah Ryan verfasserin aut Reconstructing the history of helminth prevalence in the UK 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. Arctic medicine. Tropical medicine Public aspects of medicine Patrik G Flammer verfasserin aut Rebecca Nicholson verfasserin aut Louise Loe verfasserin aut Ben Reeves verfasserin aut Enid Allison verfasserin aut Christopher Guy verfasserin aut Inés Lopez Doriga verfasserin aut Tony Waldron verfasserin aut Don Walker verfasserin aut Claas Kirchhelle verfasserin aut Greger Larson verfasserin aut Adrian L Smith verfasserin aut In PLoS Neglected Tropical Diseases Public Library of Science (PLoS), 2008 16(2022), 4 (DE-627)568915356 (DE-600)2429704-5 19352735 nnns volume:16 year:2022 number:4 https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI kostenfrei https://doaj.org/toc/1935-2727 Journal toc kostenfrei https://doaj.org/toc/1935-2735 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 4 |
spelling |
(DE-627)DOAJ037658883 (DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993 DE-627 ger DE-627 rakwb eng RC955-962 RA1-1270 Hannah Ryan verfasserin aut Reconstructing the history of helminth prevalence in the UK 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. Arctic medicine. Tropical medicine Public aspects of medicine Patrik G Flammer verfasserin aut Rebecca Nicholson verfasserin aut Louise Loe verfasserin aut Ben Reeves verfasserin aut Enid Allison verfasserin aut Christopher Guy verfasserin aut Inés Lopez Doriga verfasserin aut Tony Waldron verfasserin aut Don Walker verfasserin aut Claas Kirchhelle verfasserin aut Greger Larson verfasserin aut Adrian L Smith verfasserin aut In PLoS Neglected Tropical Diseases Public Library of Science (PLoS), 2008 16(2022), 4 (DE-627)568915356 (DE-600)2429704-5 19352735 nnns volume:16 year:2022 number:4 https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI kostenfrei https://doaj.org/toc/1935-2727 Journal toc kostenfrei https://doaj.org/toc/1935-2735 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 4 |
allfields_unstemmed |
(DE-627)DOAJ037658883 (DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993 DE-627 ger DE-627 rakwb eng RC955-962 RA1-1270 Hannah Ryan verfasserin aut Reconstructing the history of helminth prevalence in the UK 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. Arctic medicine. Tropical medicine Public aspects of medicine Patrik G Flammer verfasserin aut Rebecca Nicholson verfasserin aut Louise Loe verfasserin aut Ben Reeves verfasserin aut Enid Allison verfasserin aut Christopher Guy verfasserin aut Inés Lopez Doriga verfasserin aut Tony Waldron verfasserin aut Don Walker verfasserin aut Claas Kirchhelle verfasserin aut Greger Larson verfasserin aut Adrian L Smith verfasserin aut In PLoS Neglected Tropical Diseases Public Library of Science (PLoS), 2008 16(2022), 4 (DE-627)568915356 (DE-600)2429704-5 19352735 nnns volume:16 year:2022 number:4 https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI kostenfrei https://doaj.org/toc/1935-2727 Journal toc kostenfrei https://doaj.org/toc/1935-2735 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 4 |
allfieldsGer |
(DE-627)DOAJ037658883 (DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993 DE-627 ger DE-627 rakwb eng RC955-962 RA1-1270 Hannah Ryan verfasserin aut Reconstructing the history of helminth prevalence in the UK 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. Arctic medicine. Tropical medicine Public aspects of medicine Patrik G Flammer verfasserin aut Rebecca Nicholson verfasserin aut Louise Loe verfasserin aut Ben Reeves verfasserin aut Enid Allison verfasserin aut Christopher Guy verfasserin aut Inés Lopez Doriga verfasserin aut Tony Waldron verfasserin aut Don Walker verfasserin aut Claas Kirchhelle verfasserin aut Greger Larson verfasserin aut Adrian L Smith verfasserin aut In PLoS Neglected Tropical Diseases Public Library of Science (PLoS), 2008 16(2022), 4 (DE-627)568915356 (DE-600)2429704-5 19352735 nnns volume:16 year:2022 number:4 https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI kostenfrei https://doaj.org/toc/1935-2727 Journal toc kostenfrei https://doaj.org/toc/1935-2735 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 4 |
allfieldsSound |
(DE-627)DOAJ037658883 (DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993 DE-627 ger DE-627 rakwb eng RC955-962 RA1-1270 Hannah Ryan verfasserin aut Reconstructing the history of helminth prevalence in the UK 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. Arctic medicine. Tropical medicine Public aspects of medicine Patrik G Flammer verfasserin aut Rebecca Nicholson verfasserin aut Louise Loe verfasserin aut Ben Reeves verfasserin aut Enid Allison verfasserin aut Christopher Guy verfasserin aut Inés Lopez Doriga verfasserin aut Tony Waldron verfasserin aut Don Walker verfasserin aut Claas Kirchhelle verfasserin aut Greger Larson verfasserin aut Adrian L Smith verfasserin aut In PLoS Neglected Tropical Diseases Public Library of Science (PLoS), 2008 16(2022), 4 (DE-627)568915356 (DE-600)2429704-5 19352735 nnns volume:16 year:2022 number:4 https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI kostenfrei https://doaj.org/toc/1935-2727 Journal toc kostenfrei https://doaj.org/toc/1935-2735 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2022 4 |
language |
English |
source |
In PLoS Neglected Tropical Diseases 16(2022), 4 volume:16 year:2022 number:4 |
sourceStr |
In PLoS Neglected Tropical Diseases 16(2022), 4 volume:16 year:2022 number:4 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Arctic medicine. Tropical medicine Public aspects of medicine |
isfreeaccess_bool |
true |
container_title |
PLoS Neglected Tropical Diseases |
authorswithroles_txt_mv |
Hannah Ryan @@aut@@ Patrik G Flammer @@aut@@ Rebecca Nicholson @@aut@@ Louise Loe @@aut@@ Ben Reeves @@aut@@ Enid Allison @@aut@@ Christopher Guy @@aut@@ Inés Lopez Doriga @@aut@@ Tony Waldron @@aut@@ Don Walker @@aut@@ Claas Kirchhelle @@aut@@ Greger Larson @@aut@@ Adrian L Smith @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
568915356 |
id |
DOAJ037658883 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ037658883</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308012217.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ037658883</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC955-962</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hannah Ryan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstructing the history of helminth prevalence in the UK</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Arctic medicine. Tropical medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrik G Flammer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca Nicholson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Louise Loe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ben Reeves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enid Allison</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Guy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Inés Lopez Doriga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tony Waldron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Don Walker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claas Kirchhelle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greger Larson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adrian L Smith</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS Neglected Tropical Diseases</subfield><subfield code="d">Public Library of Science (PLoS), 2008</subfield><subfield code="g">16(2022), 4</subfield><subfield code="w">(DE-627)568915356</subfield><subfield code="w">(DE-600)2429704-5</subfield><subfield code="x">19352735</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1935-2727</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1935-2735</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Hannah Ryan |
spellingShingle |
Hannah Ryan misc RC955-962 misc RA1-1270 misc Arctic medicine. Tropical medicine misc Public aspects of medicine Reconstructing the history of helminth prevalence in the UK |
authorStr |
Hannah Ryan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)568915356 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC955-962 |
illustrated |
Not Illustrated |
issn |
19352735 |
topic_title |
RC955-962 RA1-1270 Reconstructing the history of helminth prevalence in the UK |
topic |
misc RC955-962 misc RA1-1270 misc Arctic medicine. Tropical medicine misc Public aspects of medicine |
topic_unstemmed |
misc RC955-962 misc RA1-1270 misc Arctic medicine. Tropical medicine misc Public aspects of medicine |
topic_browse |
misc RC955-962 misc RA1-1270 misc Arctic medicine. Tropical medicine misc Public aspects of medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS Neglected Tropical Diseases |
hierarchy_parent_id |
568915356 |
hierarchy_top_title |
PLoS Neglected Tropical Diseases |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)568915356 (DE-600)2429704-5 |
title |
Reconstructing the history of helminth prevalence in the UK |
ctrlnum |
(DE-627)DOAJ037658883 (DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993 |
title_full |
Reconstructing the history of helminth prevalence in the UK |
author_sort |
Hannah Ryan |
journal |
PLoS Neglected Tropical Diseases |
journalStr |
PLoS Neglected Tropical Diseases |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Hannah Ryan Patrik G Flammer Rebecca Nicholson Louise Loe Ben Reeves Enid Allison Christopher Guy Inés Lopez Doriga Tony Waldron Don Walker Claas Kirchhelle Greger Larson Adrian L Smith |
container_volume |
16 |
class |
RC955-962 RA1-1270 |
format_se |
Elektronische Aufsätze |
author-letter |
Hannah Ryan |
author2-role |
verfasserin |
title_sort |
reconstructing the history of helminth prevalence in the uk |
callnumber |
RC955-962 |
title_auth |
Reconstructing the history of helminth prevalence in the UK |
abstract |
Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. |
abstractGer |
Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. |
abstract_unstemmed |
Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Reconstructing the history of helminth prevalence in the UK |
url |
https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI https://doaj.org/toc/1935-2727 https://doaj.org/toc/1935-2735 |
remote_bool |
true |
author2 |
Patrik G Flammer Rebecca Nicholson Louise Loe Ben Reeves Enid Allison Christopher Guy Inés Lopez Doriga Tony Waldron Don Walker Claas Kirchhelle Greger Larson Adrian L Smith |
author2Str |
Patrik G Flammer Rebecca Nicholson Louise Loe Ben Reeves Enid Allison Christopher Guy Inés Lopez Doriga Tony Waldron Don Walker Claas Kirchhelle Greger Larson Adrian L Smith |
ppnlink |
568915356 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
RC955-962 |
up_date |
2024-07-03T13:19:15.828Z |
_version_ |
1803564095461392384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ037658883</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308012217.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ037658883</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f38d304a8ea4f559cdd5588fdb6f993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC955-962</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1-1270</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hannah Ryan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstructing the history of helminth prevalence in the UK</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs. Author summary Parasitic worms (helminths) cause many health problems in poorer countries, particularly those in tropical and sub-tropical regions. In modern Europe these infections are very rare and mostly found in those travelling from endemic areas but this wasn’t always the case. Archaeological studies have detected eggs of parasitic helminths in numerous European sites. Key questions include how prevalent these infections were in past communities and whether (or when) these patterns changed over time? This paper addresses both of these questions using a large number of single grave samples from archaeological sites in England dating between Prehistoric and Industrial periods. Helminth infections were detected across all periods but the overall prevalence rates changed over time, being highest in the Roman and Late-Medieval periods. The Industrial period was interesting in that two of the three sites contained very few (or no) parasites whereas the third, London, contained high levels of infection. We discuss factors that may have contributed to the changing parasite landscape and how understanding these factors may influence efforts to control helminth infections in modern endemic areas.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Arctic medicine. Tropical medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public aspects of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrik G Flammer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca Nicholson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Louise Loe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ben Reeves</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enid Allison</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Guy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Inés Lopez Doriga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tony Waldron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Don Walker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claas Kirchhelle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greger Larson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adrian L Smith</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS Neglected Tropical Diseases</subfield><subfield code="d">Public Library of Science (PLoS), 2008</subfield><subfield code="g">16(2022), 4</subfield><subfield code="w">(DE-627)568915356</subfield><subfield code="w">(DE-600)2429704-5</subfield><subfield code="x">19352735</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f38d304a8ea4f559cdd5588fdb6f993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022885/?tool=EBI</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1935-2727</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1935-2735</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield></datafield></record></collection>
|
score |
7.401515 |