The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting
With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide applica...
Ausführliche Beschreibung
Autor*in: |
Junjie Jiang [verfasserIn] Jianming Chen [verfasserIn] Zhihao Ren [verfasserIn] Zhongfa Mao [verfasserIn] Xiangyu Ma [verfasserIn] David Z. Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metals - MDPI AG, 2012, 10(2020), 9, p 1228 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:9, p 1228 |
Links: |
---|
DOI / URN: |
10.3390/met10091228 |
---|
Katalog-ID: |
DOAJ037839993 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ037839993 | ||
003 | DE-627 | ||
005 | 20240412213747.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/met10091228 |2 doi | |
035 | |a (DE-627)DOAJ037839993 | ||
035 | |a (DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Junjie Jiang |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. | ||
650 | 4 | |a selective laser melting | |
650 | 4 | |a TA15 | |
650 | 4 | |a lower surface | |
650 | 4 | |a roughness | |
650 | 4 | |a morphologies | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Jianming Chen |e verfasserin |4 aut | |
700 | 0 | |a Zhihao Ren |e verfasserin |4 aut | |
700 | 0 | |a Zhongfa Mao |e verfasserin |4 aut | |
700 | 0 | |a Xiangyu Ma |e verfasserin |4 aut | |
700 | 0 | |a David Z. Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metals |d MDPI AG, 2012 |g 10(2020), 9, p 1228 |w (DE-627)718627172 |w (DE-600)2662252-X |x 20754701 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:9, p 1228 |
856 | 4 | 0 | |u https://doi.org/10.3390/met10091228 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4701/10/9/1228 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4701 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 9, p 1228 |
author_variant |
j j jj j c jc z r zr z m zm x m xm d z z dzz |
---|---|
matchkey_str |
article:20754701:2020----::hifunefrcsprmtradcnigtaeynoesraeultot1prsa |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TN |
publishDate |
2020 |
allfields |
10.3390/met10091228 doi (DE-627)DOAJ037839993 (DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6 DE-627 ger DE-627 rakwb eng TN1-997 Junjie Jiang verfasserin aut The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. selective laser melting TA15 lower surface roughness morphologies Mining engineering. Metallurgy Jianming Chen verfasserin aut Zhihao Ren verfasserin aut Zhongfa Mao verfasserin aut Xiangyu Ma verfasserin aut David Z. Zhang verfasserin aut In Metals MDPI AG, 2012 10(2020), 9, p 1228 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:10 year:2020 number:9, p 1228 https://doi.org/10.3390/met10091228 kostenfrei https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6 kostenfrei https://www.mdpi.com/2075-4701/10/9/1228 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 1228 |
spelling |
10.3390/met10091228 doi (DE-627)DOAJ037839993 (DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6 DE-627 ger DE-627 rakwb eng TN1-997 Junjie Jiang verfasserin aut The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. selective laser melting TA15 lower surface roughness morphologies Mining engineering. Metallurgy Jianming Chen verfasserin aut Zhihao Ren verfasserin aut Zhongfa Mao verfasserin aut Xiangyu Ma verfasserin aut David Z. Zhang verfasserin aut In Metals MDPI AG, 2012 10(2020), 9, p 1228 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:10 year:2020 number:9, p 1228 https://doi.org/10.3390/met10091228 kostenfrei https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6 kostenfrei https://www.mdpi.com/2075-4701/10/9/1228 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 1228 |
allfields_unstemmed |
10.3390/met10091228 doi (DE-627)DOAJ037839993 (DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6 DE-627 ger DE-627 rakwb eng TN1-997 Junjie Jiang verfasserin aut The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. selective laser melting TA15 lower surface roughness morphologies Mining engineering. Metallurgy Jianming Chen verfasserin aut Zhihao Ren verfasserin aut Zhongfa Mao verfasserin aut Xiangyu Ma verfasserin aut David Z. Zhang verfasserin aut In Metals MDPI AG, 2012 10(2020), 9, p 1228 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:10 year:2020 number:9, p 1228 https://doi.org/10.3390/met10091228 kostenfrei https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6 kostenfrei https://www.mdpi.com/2075-4701/10/9/1228 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 1228 |
allfieldsGer |
10.3390/met10091228 doi (DE-627)DOAJ037839993 (DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6 DE-627 ger DE-627 rakwb eng TN1-997 Junjie Jiang verfasserin aut The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. selective laser melting TA15 lower surface roughness morphologies Mining engineering. Metallurgy Jianming Chen verfasserin aut Zhihao Ren verfasserin aut Zhongfa Mao verfasserin aut Xiangyu Ma verfasserin aut David Z. Zhang verfasserin aut In Metals MDPI AG, 2012 10(2020), 9, p 1228 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:10 year:2020 number:9, p 1228 https://doi.org/10.3390/met10091228 kostenfrei https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6 kostenfrei https://www.mdpi.com/2075-4701/10/9/1228 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 1228 |
allfieldsSound |
10.3390/met10091228 doi (DE-627)DOAJ037839993 (DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6 DE-627 ger DE-627 rakwb eng TN1-997 Junjie Jiang verfasserin aut The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. selective laser melting TA15 lower surface roughness morphologies Mining engineering. Metallurgy Jianming Chen verfasserin aut Zhihao Ren verfasserin aut Zhongfa Mao verfasserin aut Xiangyu Ma verfasserin aut David Z. Zhang verfasserin aut In Metals MDPI AG, 2012 10(2020), 9, p 1228 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:10 year:2020 number:9, p 1228 https://doi.org/10.3390/met10091228 kostenfrei https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6 kostenfrei https://www.mdpi.com/2075-4701/10/9/1228 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 1228 |
language |
English |
source |
In Metals 10(2020), 9, p 1228 volume:10 year:2020 number:9, p 1228 |
sourceStr |
In Metals 10(2020), 9, p 1228 volume:10 year:2020 number:9, p 1228 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
selective laser melting TA15 lower surface roughness morphologies Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Metals |
authorswithroles_txt_mv |
Junjie Jiang @@aut@@ Jianming Chen @@aut@@ Zhihao Ren @@aut@@ Zhongfa Mao @@aut@@ Xiangyu Ma @@aut@@ David Z. Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
718627172 |
id |
DOAJ037839993 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ037839993</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412213747.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met10091228</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ037839993</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junjie Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">selective laser melting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TA15</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lower surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphologies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianming Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihao Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongfa Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangyu Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Z. Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 9, p 1228</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 1228</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met10091228</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/10/9/1228</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 1228</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Junjie Jiang |
spellingShingle |
Junjie Jiang misc TN1-997 misc selective laser melting misc TA15 misc lower surface misc roughness misc morphologies misc Mining engineering. Metallurgy The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting |
authorStr |
Junjie Jiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
20754701 |
topic_title |
TN1-997 The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting selective laser melting TA15 lower surface roughness morphologies |
topic |
misc TN1-997 misc selective laser melting misc TA15 misc lower surface misc roughness misc morphologies misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc selective laser melting misc TA15 misc lower surface misc roughness misc morphologies misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc selective laser melting misc TA15 misc lower surface misc roughness misc morphologies misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metals |
hierarchy_parent_id |
718627172 |
hierarchy_top_title |
Metals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627172 (DE-600)2662252-X |
title |
The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting |
ctrlnum |
(DE-627)DOAJ037839993 (DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6 |
title_full |
The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting |
author_sort |
Junjie Jiang |
journal |
Metals |
journalStr |
Metals |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Junjie Jiang Jianming Chen Zhihao Ren Zhongfa Mao Xiangyu Ma David Z. Zhang |
container_volume |
10 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Junjie Jiang |
doi_str_mv |
10.3390/met10091228 |
author2-role |
verfasserin |
title_sort |
influence of process parameters and scanning strategy on lower surface quality of ta15 parts fabricated by selective laser melting |
callnumber |
TN1-997 |
title_auth |
The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting |
abstract |
With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. |
abstractGer |
With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. |
abstract_unstemmed |
With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1228 |
title_short |
The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting |
url |
https://doi.org/10.3390/met10091228 https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6 https://www.mdpi.com/2075-4701/10/9/1228 https://doaj.org/toc/2075-4701 |
remote_bool |
true |
author2 |
Jianming Chen Zhihao Ren Zhongfa Mao Xiangyu Ma David Z. Zhang |
author2Str |
Jianming Chen Zhihao Ren Zhongfa Mao Xiangyu Ma David Z. Zhang |
ppnlink |
718627172 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/met10091228 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T14:26:11.603Z |
_version_ |
1803568306307727360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ037839993</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412213747.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met10091228</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ037839993</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12eff4b78e3d43ed9c7ed39643a433d6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junjie Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Influence of Process Parameters and Scanning Strategy on Lower Surface Quality of TA15 Parts Fabricated by Selective Laser Melting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (<i<E<sub<F</sub<</i<) had a significant influence on the quality of the lower surface. Excessive <i<E<sub<F</sub<</i< led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low <i<E<sub<F</sub<</i< easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low <i<E<sub<F</sub<</i< and high <i<E<sub<F</sub<</i<, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">selective laser melting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TA15</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lower surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphologies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianming Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihao Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongfa Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangyu Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Z. Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 9, p 1228</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 1228</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met10091228</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12eff4b78e3d43ed9c7ed39643a433d6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/10/9/1228</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 1228</subfield></datafield></record></collection>
|
score |
7.401576 |