Decontamination technologies for medicinal and aromatic plants: A review
Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, e...
Ausführliche Beschreibung
Autor*in: |
Edris Rahmati [verfasserIn] Mohammad Hadi Khoshtaghaza [verfasserIn] Ahmad Banakar [verfasserIn] Mohammad‐Taghi Ebadi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Food Science & Nutrition - Wiley, 2014, 10(2022), 3, Seite 784-799 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:3 ; pages:784-799 |
Links: |
---|
DOI / URN: |
10.1002/fsn3.2707 |
---|
Katalog-ID: |
DOAJ038211068 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ038211068 | ||
003 | DE-627 | ||
005 | 20230308020241.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/fsn3.2707 |2 doi | |
035 | |a (DE-627)DOAJ038211068 | ||
035 | |a (DE-599)DOAJa5890cb24d90486ca867770ad4664aa9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TX341-641 | |
100 | 0 | |a Edris Rahmati |e verfasserin |4 aut | |
245 | 1 | 0 | |a Decontamination technologies for medicinal and aromatic plants: A review |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. | ||
650 | 4 | |a bioactive composition | |
650 | 4 | |a food safety | |
650 | 4 | |a herb and spices | |
650 | 4 | |a microbial contamination | |
650 | 4 | |a thermal and nonthermal processing | |
653 | 0 | |a Nutrition. Foods and food supply | |
700 | 0 | |a Mohammad Hadi Khoshtaghaza |e verfasserin |4 aut | |
700 | 0 | |a Ahmad Banakar |e verfasserin |4 aut | |
700 | 0 | |a Mohammad‐Taghi Ebadi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Food Science & Nutrition |d Wiley, 2014 |g 10(2022), 3, Seite 784-799 |w (DE-627)73655713X |w (DE-600)2703010-6 |x 20487177 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:3 |g pages:784-799 |
856 | 4 | 0 | |u https://doi.org/10.1002/fsn3.2707 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/fsn3.2707 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2048-7177 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 3 |h 784-799 |
author_variant |
e r er m h k mhk a b ab m e me |
---|---|
matchkey_str |
article:20487177:2022----::eotmntotcnlgefreiiaadr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TX |
publishDate |
2022 |
allfields |
10.1002/fsn3.2707 doi (DE-627)DOAJ038211068 (DE-599)DOAJa5890cb24d90486ca867770ad4664aa9 DE-627 ger DE-627 rakwb eng TX341-641 Edris Rahmati verfasserin aut Decontamination technologies for medicinal and aromatic plants: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. bioactive composition food safety herb and spices microbial contamination thermal and nonthermal processing Nutrition. Foods and food supply Mohammad Hadi Khoshtaghaza verfasserin aut Ahmad Banakar verfasserin aut Mohammad‐Taghi Ebadi verfasserin aut In Food Science & Nutrition Wiley, 2014 10(2022), 3, Seite 784-799 (DE-627)73655713X (DE-600)2703010-6 20487177 nnns volume:10 year:2022 number:3 pages:784-799 https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9 kostenfrei https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/toc/2048-7177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3 784-799 |
spelling |
10.1002/fsn3.2707 doi (DE-627)DOAJ038211068 (DE-599)DOAJa5890cb24d90486ca867770ad4664aa9 DE-627 ger DE-627 rakwb eng TX341-641 Edris Rahmati verfasserin aut Decontamination technologies for medicinal and aromatic plants: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. bioactive composition food safety herb and spices microbial contamination thermal and nonthermal processing Nutrition. Foods and food supply Mohammad Hadi Khoshtaghaza verfasserin aut Ahmad Banakar verfasserin aut Mohammad‐Taghi Ebadi verfasserin aut In Food Science & Nutrition Wiley, 2014 10(2022), 3, Seite 784-799 (DE-627)73655713X (DE-600)2703010-6 20487177 nnns volume:10 year:2022 number:3 pages:784-799 https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9 kostenfrei https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/toc/2048-7177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3 784-799 |
allfields_unstemmed |
10.1002/fsn3.2707 doi (DE-627)DOAJ038211068 (DE-599)DOAJa5890cb24d90486ca867770ad4664aa9 DE-627 ger DE-627 rakwb eng TX341-641 Edris Rahmati verfasserin aut Decontamination technologies for medicinal and aromatic plants: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. bioactive composition food safety herb and spices microbial contamination thermal and nonthermal processing Nutrition. Foods and food supply Mohammad Hadi Khoshtaghaza verfasserin aut Ahmad Banakar verfasserin aut Mohammad‐Taghi Ebadi verfasserin aut In Food Science & Nutrition Wiley, 2014 10(2022), 3, Seite 784-799 (DE-627)73655713X (DE-600)2703010-6 20487177 nnns volume:10 year:2022 number:3 pages:784-799 https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9 kostenfrei https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/toc/2048-7177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3 784-799 |
allfieldsGer |
10.1002/fsn3.2707 doi (DE-627)DOAJ038211068 (DE-599)DOAJa5890cb24d90486ca867770ad4664aa9 DE-627 ger DE-627 rakwb eng TX341-641 Edris Rahmati verfasserin aut Decontamination technologies for medicinal and aromatic plants: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. bioactive composition food safety herb and spices microbial contamination thermal and nonthermal processing Nutrition. Foods and food supply Mohammad Hadi Khoshtaghaza verfasserin aut Ahmad Banakar verfasserin aut Mohammad‐Taghi Ebadi verfasserin aut In Food Science & Nutrition Wiley, 2014 10(2022), 3, Seite 784-799 (DE-627)73655713X (DE-600)2703010-6 20487177 nnns volume:10 year:2022 number:3 pages:784-799 https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9 kostenfrei https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/toc/2048-7177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3 784-799 |
allfieldsSound |
10.1002/fsn3.2707 doi (DE-627)DOAJ038211068 (DE-599)DOAJa5890cb24d90486ca867770ad4664aa9 DE-627 ger DE-627 rakwb eng TX341-641 Edris Rahmati verfasserin aut Decontamination technologies for medicinal and aromatic plants: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. bioactive composition food safety herb and spices microbial contamination thermal and nonthermal processing Nutrition. Foods and food supply Mohammad Hadi Khoshtaghaza verfasserin aut Ahmad Banakar verfasserin aut Mohammad‐Taghi Ebadi verfasserin aut In Food Science & Nutrition Wiley, 2014 10(2022), 3, Seite 784-799 (DE-627)73655713X (DE-600)2703010-6 20487177 nnns volume:10 year:2022 number:3 pages:784-799 https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9 kostenfrei https://doi.org/10.1002/fsn3.2707 kostenfrei https://doaj.org/toc/2048-7177 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3 784-799 |
language |
English |
source |
In Food Science & Nutrition 10(2022), 3, Seite 784-799 volume:10 year:2022 number:3 pages:784-799 |
sourceStr |
In Food Science & Nutrition 10(2022), 3, Seite 784-799 volume:10 year:2022 number:3 pages:784-799 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bioactive composition food safety herb and spices microbial contamination thermal and nonthermal processing Nutrition. Foods and food supply |
isfreeaccess_bool |
true |
container_title |
Food Science & Nutrition |
authorswithroles_txt_mv |
Edris Rahmati @@aut@@ Mohammad Hadi Khoshtaghaza @@aut@@ Ahmad Banakar @@aut@@ Mohammad‐Taghi Ebadi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
73655713X |
id |
DOAJ038211068 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038211068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308020241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/fsn3.2707</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038211068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa5890cb24d90486ca867770ad4664aa9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TX341-641</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Edris Rahmati</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decontamination technologies for medicinal and aromatic plants: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioactive composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">food safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">herb and spices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbial contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal and nonthermal processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nutrition. Foods and food supply</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Hadi Khoshtaghaza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmad Banakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad‐Taghi Ebadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Food Science & Nutrition</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">10(2022), 3, Seite 784-799</subfield><subfield code="w">(DE-627)73655713X</subfield><subfield code="w">(DE-600)2703010-6</subfield><subfield code="x">20487177</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:784-799</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fsn3.2707</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fsn3.2707</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2048-7177</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="h">784-799</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Edris Rahmati |
spellingShingle |
Edris Rahmati misc TX341-641 misc bioactive composition misc food safety misc herb and spices misc microbial contamination misc thermal and nonthermal processing misc Nutrition. Foods and food supply Decontamination technologies for medicinal and aromatic plants: A review |
authorStr |
Edris Rahmati |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)73655713X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TX341-641 |
illustrated |
Not Illustrated |
issn |
20487177 |
topic_title |
TX341-641 Decontamination technologies for medicinal and aromatic plants: A review bioactive composition food safety herb and spices microbial contamination thermal and nonthermal processing |
topic |
misc TX341-641 misc bioactive composition misc food safety misc herb and spices misc microbial contamination misc thermal and nonthermal processing misc Nutrition. Foods and food supply |
topic_unstemmed |
misc TX341-641 misc bioactive composition misc food safety misc herb and spices misc microbial contamination misc thermal and nonthermal processing misc Nutrition. Foods and food supply |
topic_browse |
misc TX341-641 misc bioactive composition misc food safety misc herb and spices misc microbial contamination misc thermal and nonthermal processing misc Nutrition. Foods and food supply |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Food Science & Nutrition |
hierarchy_parent_id |
73655713X |
hierarchy_top_title |
Food Science & Nutrition |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)73655713X (DE-600)2703010-6 |
title |
Decontamination technologies for medicinal and aromatic plants: A review |
ctrlnum |
(DE-627)DOAJ038211068 (DE-599)DOAJa5890cb24d90486ca867770ad4664aa9 |
title_full |
Decontamination technologies for medicinal and aromatic plants: A review |
author_sort |
Edris Rahmati |
journal |
Food Science & Nutrition |
journalStr |
Food Science & Nutrition |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
784 |
author_browse |
Edris Rahmati Mohammad Hadi Khoshtaghaza Ahmad Banakar Mohammad‐Taghi Ebadi |
container_volume |
10 |
class |
TX341-641 |
format_se |
Elektronische Aufsätze |
author-letter |
Edris Rahmati |
doi_str_mv |
10.1002/fsn3.2707 |
author2-role |
verfasserin |
title_sort |
decontamination technologies for medicinal and aromatic plants: a review |
callnumber |
TX341-641 |
title_auth |
Decontamination technologies for medicinal and aromatic plants: A review |
abstract |
Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. |
abstractGer |
Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. |
abstract_unstemmed |
Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Decontamination technologies for medicinal and aromatic plants: A review |
url |
https://doi.org/10.1002/fsn3.2707 https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9 https://doaj.org/toc/2048-7177 |
remote_bool |
true |
author2 |
Mohammad Hadi Khoshtaghaza Ahmad Banakar Mohammad‐Taghi Ebadi |
author2Str |
Mohammad Hadi Khoshtaghaza Ahmad Banakar Mohammad‐Taghi Ebadi |
ppnlink |
73655713X |
callnumber-subject |
TX - Home Economics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/fsn3.2707 |
callnumber-a |
TX341-641 |
up_date |
2024-07-03T16:41:57.987Z |
_version_ |
1803576848440885248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038211068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308020241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/fsn3.2707</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038211068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa5890cb24d90486ca867770ad4664aa9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TX341-641</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Edris Rahmati</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decontamination technologies for medicinal and aromatic plants: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by‐products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioactive composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">food safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">herb and spices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbial contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal and nonthermal processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nutrition. Foods and food supply</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Hadi Khoshtaghaza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmad Banakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad‐Taghi Ebadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Food Science & Nutrition</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">10(2022), 3, Seite 784-799</subfield><subfield code="w">(DE-627)73655713X</subfield><subfield code="w">(DE-600)2703010-6</subfield><subfield code="x">20487177</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:784-799</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fsn3.2707</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a5890cb24d90486ca867770ad4664aa9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/fsn3.2707</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2048-7177</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="h">784-799</subfield></datafield></record></collection>
|
score |
7.3995953 |