Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force
Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probabili...
Ausführliche Beschreibung
Autor*in: |
Jianhua Cheng [verfasserIn] Yanwei Gao [verfasserIn] Dehui Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Inequalities and Applications - SpringerOpen, 2002, (2016), 1, Seite 13 |
---|---|
Übergeordnetes Werk: |
year:2016 ; number:1 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1186/s13660-016-1135-8 |
---|
Katalog-ID: |
DOAJ038273918 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ038273918 | ||
003 | DE-627 | ||
005 | 20230502093227.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13660-016-1135-8 |2 doi | |
035 | |a (DE-627)DOAJ038273918 | ||
035 | |a (DE-599)DOAJb240761e434444d9a3dd124c663540e8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Jianhua Cheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. | ||
650 | 4 | |a perturbed risk model | |
650 | 4 | |a constant interest force | |
650 | 4 | |a ruin probability | |
650 | 4 | |a upper bound | |
650 | 4 | |a asymptotic formula | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Yanwei Gao |e verfasserin |4 aut | |
700 | 0 | |a Dehui Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Inequalities and Applications |d SpringerOpen, 2002 |g (2016), 1, Seite 13 |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029242X |7 nnns |
773 | 1 | 8 | |g year:2016 |g number:1 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13660-016-1135-8 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b240761e434444d9a3dd124c663540e8 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13660-016-1135-8 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1029-242X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2016 |e 1 |h 13 |
author_variant |
j c jc y g yg d w dw |
---|---|
matchkey_str |
article:1029242X:2016----::unrbbltefrprubdikoewtsohsipeima |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
QA |
publishDate |
2016 |
allfields |
10.1186/s13660-016-1135-8 doi (DE-627)DOAJ038273918 (DE-599)DOAJb240761e434444d9a3dd124c663540e8 DE-627 ger DE-627 rakwb eng QA1-939 Jianhua Cheng verfasserin aut Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. perturbed risk model constant interest force ruin probability upper bound asymptotic formula Mathematics Yanwei Gao verfasserin aut Dehui Wang verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2016), 1, Seite 13 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2016 number:1 pages:13 https://doi.org/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/article/b240761e434444d9a3dd124c663540e8 kostenfrei http://link.springer.com/article/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 13 |
spelling |
10.1186/s13660-016-1135-8 doi (DE-627)DOAJ038273918 (DE-599)DOAJb240761e434444d9a3dd124c663540e8 DE-627 ger DE-627 rakwb eng QA1-939 Jianhua Cheng verfasserin aut Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. perturbed risk model constant interest force ruin probability upper bound asymptotic formula Mathematics Yanwei Gao verfasserin aut Dehui Wang verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2016), 1, Seite 13 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2016 number:1 pages:13 https://doi.org/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/article/b240761e434444d9a3dd124c663540e8 kostenfrei http://link.springer.com/article/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 13 |
allfields_unstemmed |
10.1186/s13660-016-1135-8 doi (DE-627)DOAJ038273918 (DE-599)DOAJb240761e434444d9a3dd124c663540e8 DE-627 ger DE-627 rakwb eng QA1-939 Jianhua Cheng verfasserin aut Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. perturbed risk model constant interest force ruin probability upper bound asymptotic formula Mathematics Yanwei Gao verfasserin aut Dehui Wang verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2016), 1, Seite 13 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2016 number:1 pages:13 https://doi.org/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/article/b240761e434444d9a3dd124c663540e8 kostenfrei http://link.springer.com/article/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 13 |
allfieldsGer |
10.1186/s13660-016-1135-8 doi (DE-627)DOAJ038273918 (DE-599)DOAJb240761e434444d9a3dd124c663540e8 DE-627 ger DE-627 rakwb eng QA1-939 Jianhua Cheng verfasserin aut Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. perturbed risk model constant interest force ruin probability upper bound asymptotic formula Mathematics Yanwei Gao verfasserin aut Dehui Wang verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2016), 1, Seite 13 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2016 number:1 pages:13 https://doi.org/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/article/b240761e434444d9a3dd124c663540e8 kostenfrei http://link.springer.com/article/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 13 |
allfieldsSound |
10.1186/s13660-016-1135-8 doi (DE-627)DOAJ038273918 (DE-599)DOAJb240761e434444d9a3dd124c663540e8 DE-627 ger DE-627 rakwb eng QA1-939 Jianhua Cheng verfasserin aut Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. perturbed risk model constant interest force ruin probability upper bound asymptotic formula Mathematics Yanwei Gao verfasserin aut Dehui Wang verfasserin aut In Journal of Inequalities and Applications SpringerOpen, 2002 (2016), 1, Seite 13 (DE-627)320977056 (DE-600)2028512-7 1029242X nnns year:2016 number:1 pages:13 https://doi.org/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/article/b240761e434444d9a3dd124c663540e8 kostenfrei http://link.springer.com/article/10.1186/s13660-016-1135-8 kostenfrei https://doaj.org/toc/1029-242X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 13 |
language |
English |
source |
In Journal of Inequalities and Applications (2016), 1, Seite 13 year:2016 number:1 pages:13 |
sourceStr |
In Journal of Inequalities and Applications (2016), 1, Seite 13 year:2016 number:1 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
perturbed risk model constant interest force ruin probability upper bound asymptotic formula Mathematics |
isfreeaccess_bool |
true |
container_title |
Journal of Inequalities and Applications |
authorswithroles_txt_mv |
Jianhua Cheng @@aut@@ Yanwei Gao @@aut@@ Dehui Wang @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
320977056 |
id |
DOAJ038273918 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038273918</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502093227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-016-1135-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038273918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb240761e434444d9a3dd124c663540e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianhua Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perturbed risk model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constant interest force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ruin probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic formula</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanwei Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dehui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Inequalities and Applications</subfield><subfield code="d">SpringerOpen, 2002</subfield><subfield code="g">(2016), 1, Seite 13</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13660-016-1135-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b240761e434444d9a3dd124c663540e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13660-016-1135-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-242X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jianhua Cheng |
spellingShingle |
Jianhua Cheng misc QA1-939 misc perturbed risk model misc constant interest force misc ruin probability misc upper bound misc asymptotic formula misc Mathematics Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force |
authorStr |
Jianhua Cheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
1029242X |
topic_title |
QA1-939 Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force perturbed risk model constant interest force ruin probability upper bound asymptotic formula |
topic |
misc QA1-939 misc perturbed risk model misc constant interest force misc ruin probability misc upper bound misc asymptotic formula misc Mathematics |
topic_unstemmed |
misc QA1-939 misc perturbed risk model misc constant interest force misc ruin probability misc upper bound misc asymptotic formula misc Mathematics |
topic_browse |
misc QA1-939 misc perturbed risk model misc constant interest force misc ruin probability misc upper bound misc asymptotic formula misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Inequalities and Applications |
hierarchy_parent_id |
320977056 |
hierarchy_top_title |
Journal of Inequalities and Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force |
ctrlnum |
(DE-627)DOAJ038273918 (DE-599)DOAJb240761e434444d9a3dd124c663540e8 |
title_full |
Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force |
author_sort |
Jianhua Cheng |
journal |
Journal of Inequalities and Applications |
journalStr |
Journal of Inequalities and Applications |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Jianhua Cheng Yanwei Gao Dehui Wang |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianhua Cheng |
doi_str_mv |
10.1186/s13660-016-1135-8 |
author2-role |
verfasserin |
title_sort |
ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force |
callnumber |
QA1-939 |
title_auth |
Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force |
abstract |
Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. |
abstractGer |
Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. |
abstract_unstemmed |
Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force |
url |
https://doi.org/10.1186/s13660-016-1135-8 https://doaj.org/article/b240761e434444d9a3dd124c663540e8 http://link.springer.com/article/10.1186/s13660-016-1135-8 https://doaj.org/toc/1029-242X |
remote_bool |
true |
author2 |
Yanwei Gao Dehui Wang |
author2Str |
Yanwei Gao Dehui Wang |
ppnlink |
320977056 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13660-016-1135-8 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T17:01:49.011Z |
_version_ |
1803578097286512640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038273918</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502093227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-016-1135-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038273918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb240761e434444d9a3dd124c663540e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianhua Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ruin probabilities for a perturbed risk model with stochastic premiums and constant interest force</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we consider a perturbed compound Poisson risk model with stochastic premiums and constant interest force. We obtain the upper bound and Lundberg-Cramér approximation for the infinite-time ruin probability, and consider the asymptotic formula for the finite-time ruin probability when the claim size is heavy-tailed. We show that the model in our paper has similar results to the classical risk process and some existing generalized models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perturbed risk model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constant interest force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ruin probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic formula</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanwei Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dehui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Inequalities and Applications</subfield><subfield code="d">SpringerOpen, 2002</subfield><subfield code="g">(2016), 1, Seite 13</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13660-016-1135-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b240761e434444d9a3dd124c663540e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13660-016-1135-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-242X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.4016 |