Optimization of traction power supply system modes by voltage and reactive power to reduce losses
The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in...
Ausführliche Beschreibung
Autor*in: |
Badretdinov T.N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Deutsch ; Englisch ; Russisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta - Academician I.G. Petrovskii Bryansk State University, 2018, 4(2018), 2, Seite 226-231 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2018 ; number:2 ; pages:226-231 |
Links: |
---|
DOI / URN: |
10.22281/2413-9920-2018-04-02-226-231 |
---|
Katalog-ID: |
DOAJ038674467 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ038674467 | ||
003 | DE-627 | ||
005 | 20230308023313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||ger c | ||
024 | 7 | |a 10.22281/2413-9920-2018-04-02-226-231 |2 doi | |
035 | |a (DE-627)DOAJ038674467 | ||
035 | |a (DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a ger |a eng |a rus | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Badretdinov T.N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of traction power supply system modes by voltage and reactive power to reduce losses |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. | ||
650 | 4 | |a reactive power | |
650 | 4 | |a traction power supply | |
650 | 4 | |a voltage regulation | |
650 | 4 | |a power loss | |
650 | 4 | |a reactive power compensation | |
650 | 4 | |a traction substation | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Chemistry | |
773 | 0 | 8 | |i In |t Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta |d Academician I.G. Petrovskii Bryansk State University, 2018 |g 4(2018), 2, Seite 226-231 |w (DE-627)1014029147 |x 24139920 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2018 |g number:2 |g pages:226-231 |
856 | 4 | 0 | |u https://doi.org/10.22281/2413-9920-2018-04-02-226-231 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365 |z kostenfrei |
856 | 4 | 0 | |u http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2413-9920 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2018 |e 2 |h 226-231 |
author_variant |
b t bt |
---|---|
matchkey_str |
article:24139920:2018----::piiainfrcinoesplssemdsyotgadec |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TA |
publishDate |
2018 |
allfields |
10.22281/2413-9920-2018-04-02-226-231 doi (DE-627)DOAJ038674467 (DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365 DE-627 ger DE-627 rakwb ger eng rus TA1-2040 QD1-999 Badretdinov T.N. verfasserin aut Optimization of traction power supply system modes by voltage and reactive power to reduce losses 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. reactive power traction power supply voltage regulation power loss reactive power compensation traction substation Engineering (General). Civil engineering (General) Chemistry In Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta Academician I.G. Petrovskii Bryansk State University, 2018 4(2018), 2, Seite 226-231 (DE-627)1014029147 24139920 nnns volume:4 year:2018 number:2 pages:226-231 https://doi.org/10.22281/2413-9920-2018-04-02-226-231 kostenfrei https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365 kostenfrei http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf kostenfrei https://doaj.org/toc/2413-9920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 2 226-231 |
spelling |
10.22281/2413-9920-2018-04-02-226-231 doi (DE-627)DOAJ038674467 (DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365 DE-627 ger DE-627 rakwb ger eng rus TA1-2040 QD1-999 Badretdinov T.N. verfasserin aut Optimization of traction power supply system modes by voltage and reactive power to reduce losses 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. reactive power traction power supply voltage regulation power loss reactive power compensation traction substation Engineering (General). Civil engineering (General) Chemistry In Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta Academician I.G. Petrovskii Bryansk State University, 2018 4(2018), 2, Seite 226-231 (DE-627)1014029147 24139920 nnns volume:4 year:2018 number:2 pages:226-231 https://doi.org/10.22281/2413-9920-2018-04-02-226-231 kostenfrei https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365 kostenfrei http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf kostenfrei https://doaj.org/toc/2413-9920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 2 226-231 |
allfields_unstemmed |
10.22281/2413-9920-2018-04-02-226-231 doi (DE-627)DOAJ038674467 (DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365 DE-627 ger DE-627 rakwb ger eng rus TA1-2040 QD1-999 Badretdinov T.N. verfasserin aut Optimization of traction power supply system modes by voltage and reactive power to reduce losses 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. reactive power traction power supply voltage regulation power loss reactive power compensation traction substation Engineering (General). Civil engineering (General) Chemistry In Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta Academician I.G. Petrovskii Bryansk State University, 2018 4(2018), 2, Seite 226-231 (DE-627)1014029147 24139920 nnns volume:4 year:2018 number:2 pages:226-231 https://doi.org/10.22281/2413-9920-2018-04-02-226-231 kostenfrei https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365 kostenfrei http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf kostenfrei https://doaj.org/toc/2413-9920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 2 226-231 |
allfieldsGer |
10.22281/2413-9920-2018-04-02-226-231 doi (DE-627)DOAJ038674467 (DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365 DE-627 ger DE-627 rakwb ger eng rus TA1-2040 QD1-999 Badretdinov T.N. verfasserin aut Optimization of traction power supply system modes by voltage and reactive power to reduce losses 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. reactive power traction power supply voltage regulation power loss reactive power compensation traction substation Engineering (General). Civil engineering (General) Chemistry In Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta Academician I.G. Petrovskii Bryansk State University, 2018 4(2018), 2, Seite 226-231 (DE-627)1014029147 24139920 nnns volume:4 year:2018 number:2 pages:226-231 https://doi.org/10.22281/2413-9920-2018-04-02-226-231 kostenfrei https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365 kostenfrei http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf kostenfrei https://doaj.org/toc/2413-9920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 2 226-231 |
allfieldsSound |
10.22281/2413-9920-2018-04-02-226-231 doi (DE-627)DOAJ038674467 (DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365 DE-627 ger DE-627 rakwb ger eng rus TA1-2040 QD1-999 Badretdinov T.N. verfasserin aut Optimization of traction power supply system modes by voltage and reactive power to reduce losses 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. reactive power traction power supply voltage regulation power loss reactive power compensation traction substation Engineering (General). Civil engineering (General) Chemistry In Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta Academician I.G. Petrovskii Bryansk State University, 2018 4(2018), 2, Seite 226-231 (DE-627)1014029147 24139920 nnns volume:4 year:2018 number:2 pages:226-231 https://doi.org/10.22281/2413-9920-2018-04-02-226-231 kostenfrei https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365 kostenfrei http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf kostenfrei https://doaj.org/toc/2413-9920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 2 226-231 |
language |
German English Russian |
source |
In Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta 4(2018), 2, Seite 226-231 volume:4 year:2018 number:2 pages:226-231 |
sourceStr |
In Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta 4(2018), 2, Seite 226-231 volume:4 year:2018 number:2 pages:226-231 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
reactive power traction power supply voltage regulation power loss reactive power compensation traction substation Engineering (General). Civil engineering (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta |
authorswithroles_txt_mv |
Badretdinov T.N. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
1014029147 |
id |
DOAJ038674467 |
language_de |
deutsch englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038674467</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308023313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||ger c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22281/2413-9920-2018-04-02-226-231</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038674467</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Badretdinov T.N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of traction power supply system modes by voltage and reactive power to reduce losses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traction power supply</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traction substation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta</subfield><subfield code="d">Academician I.G. Petrovskii Bryansk State University, 2018</subfield><subfield code="g">4(2018), 2, Seite 226-231</subfield><subfield code="w">(DE-627)1014029147</subfield><subfield code="x">24139920</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:226-231</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22281/2413-9920-2018-04-02-226-231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2413-9920</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="h">226-231</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Badretdinov T.N. |
spellingShingle |
Badretdinov T.N. misc TA1-2040 misc QD1-999 misc reactive power misc traction power supply misc voltage regulation misc power loss misc reactive power compensation misc traction substation misc Engineering (General). Civil engineering (General) misc Chemistry Optimization of traction power supply system modes by voltage and reactive power to reduce losses |
authorStr |
Badretdinov T.N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1014029147 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
24139920 |
topic_title |
TA1-2040 QD1-999 Optimization of traction power supply system modes by voltage and reactive power to reduce losses reactive power traction power supply voltage regulation power loss reactive power compensation traction substation |
topic |
misc TA1-2040 misc QD1-999 misc reactive power misc traction power supply misc voltage regulation misc power loss misc reactive power compensation misc traction substation misc Engineering (General). Civil engineering (General) misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QD1-999 misc reactive power misc traction power supply misc voltage regulation misc power loss misc reactive power compensation misc traction substation misc Engineering (General). Civil engineering (General) misc Chemistry |
topic_browse |
misc TA1-2040 misc QD1-999 misc reactive power misc traction power supply misc voltage regulation misc power loss misc reactive power compensation misc traction substation misc Engineering (General). Civil engineering (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta |
hierarchy_parent_id |
1014029147 |
hierarchy_top_title |
Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1014029147 |
title |
Optimization of traction power supply system modes by voltage and reactive power to reduce losses |
ctrlnum |
(DE-627)DOAJ038674467 (DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365 |
title_full |
Optimization of traction power supply system modes by voltage and reactive power to reduce losses |
author_sort |
Badretdinov T.N. |
journal |
Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta |
journalStr |
Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta |
callnumber-first-code |
T |
lang_code |
ger eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
226 |
author_browse |
Badretdinov T.N. |
container_volume |
4 |
class |
TA1-2040 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Badretdinov T.N. |
doi_str_mv |
10.22281/2413-9920-2018-04-02-226-231 |
title_sort |
optimization of traction power supply system modes by voltage and reactive power to reduce losses |
callnumber |
TA1-2040 |
title_auth |
Optimization of traction power supply system modes by voltage and reactive power to reduce losses |
abstract |
The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. |
abstractGer |
The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. |
abstract_unstemmed |
The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Optimization of traction power supply system modes by voltage and reactive power to reduce losses |
url |
https://doi.org/10.22281/2413-9920-2018-04-02-226-231 https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365 http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf https://doaj.org/toc/2413-9920 |
remote_bool |
true |
ppnlink |
1014029147 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.22281/2413-9920-2018-04-02-226-231 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:15:37.212Z |
_version_ |
1803586515462258688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038674467</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308023313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||ger c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22281/2413-9920-2018-04-02-226-231</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038674467</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ64fa5a4be3154bd7a32228f2dfecb365</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Badretdinov T.N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of traction power supply system modes by voltage and reactive power to reduce losses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The mathematical model is elaborated and analysis of the system is done on the adaptive voltage control and reactive power compensation of AC traction to minimize active losses. Sharp changes in the load shoulder traction substation, which includes a compensating installation, leads to a decrease in the voltage loss in the system to it, and therefore to an increase in its power, which in turn will cause an additional increase in voltage in the traction network. To this voltage does not exceed the permissible, it is necessary to use longitudinal-transverse compensators with adjustable parameters. The purpose of this article is to justify the selection of an algorithm for adaptive voltage regulation and parameters of the reactive power compensator based on continuous measurement of the external power supply system in the simulation of its operation modes, taking into account the influence of the traction power supply system. In particular, it provides for the possibility of regulating the voltage of the traction transformer under load when included in the traction network of longitudinal-transverse compensators installations, taking into account the longitudinal and transverse asymmetry of the power supply system parameters and its real parameters, as well as the non-linear nature of the current-voltage characteristics of the electric rolling stock. In this paper, we will consider in a first approximation a power supply system with a single traction substation with an adjustable transformer equipped with voltage regulation under load, and an adjustable installation of transverse capacitive compensation of compensating installation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traction power supply</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traction substation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta</subfield><subfield code="d">Academician I.G. Petrovskii Bryansk State University, 2018</subfield><subfield code="g">4(2018), 2, Seite 226-231</subfield><subfield code="w">(DE-627)1014029147</subfield><subfield code="x">24139920</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:226-231</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22281/2413-9920-2018-04-02-226-231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/64fa5a4be3154bd7a32228f2dfecb365</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ntv-brgu.ru/wp-content/arhiv/2018-N2/2018-02-10.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2413-9920</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="h">226-231</subfield></datafield></record></collection>
|
score |
7.4002275 |