Stability of the relative equilibria in the generalized J2 problem
For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stab...
Ausführliche Beschreibung
Autor*in: |
Mioc V. [verfasserIn] Stavinschi M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2000 |
---|
Übergeordnetes Werk: |
In: Serbian Astronomical Journal - Astronomical Observatory, Department of Astronomy, Belgrade, 2008, (2000), 161, Seite 9-13 |
---|---|
Übergeordnetes Werk: |
year:2000 ; number:161 ; pages:9-13 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2298/SAJ0061009M |
---|
Katalog-ID: |
DOAJ038873605 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ038873605 | ||
003 | DE-627 | ||
005 | 20230308024403.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2000 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2298/SAJ0061009M |2 doi | |
035 | |a (DE-627)DOAJ038873605 | ||
035 | |a (DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB1-991 | |
100 | 0 | |a Mioc V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stability of the relative equilibria in the generalized J2 problem |
264 | 1 | |c 2000 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. | ||
653 | 0 | |a Astronomy | |
700 | 0 | |a Stavinschi M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Serbian Astronomical Journal |d Astronomical Observatory, Department of Astronomy, Belgrade, 2008 |g (2000), 161, Seite 9-13 |w (DE-627)538218460 |w (DE-600)2378699-1 |x 18209289 |7 nnns |
773 | 1 | 8 | |g year:2000 |g number:161 |g pages:9-13 |
856 | 4 | 0 | |u https://doi.org/10.2298/SAJ0061009M |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646 |z kostenfrei |
856 | 4 | 0 | |u http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1450-698X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1820-9289 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2000 |e 161 |h 9-13 |
author_variant |
m v mv s m sm |
---|---|
matchkey_str |
article:18209289:2000----::tbltoteeaieqiiranhgnr |
hierarchy_sort_str |
2000 |
callnumber-subject-code |
QB |
publishDate |
2000 |
allfields |
10.2298/SAJ0061009M doi (DE-627)DOAJ038873605 (DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646 DE-627 ger DE-627 rakwb eng QB1-991 Mioc V. verfasserin aut Stability of the relative equilibria in the generalized J2 problem 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. Astronomy Stavinschi M. verfasserin aut In Serbian Astronomical Journal Astronomical Observatory, Department of Astronomy, Belgrade, 2008 (2000), 161, Seite 9-13 (DE-627)538218460 (DE-600)2378699-1 18209289 nnns year:2000 number:161 pages:9-13 https://doi.org/10.2298/SAJ0061009M kostenfrei https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf kostenfrei https://doaj.org/toc/1450-698X Journal toc kostenfrei https://doaj.org/toc/1820-9289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2000 161 9-13 |
spelling |
10.2298/SAJ0061009M doi (DE-627)DOAJ038873605 (DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646 DE-627 ger DE-627 rakwb eng QB1-991 Mioc V. verfasserin aut Stability of the relative equilibria in the generalized J2 problem 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. Astronomy Stavinschi M. verfasserin aut In Serbian Astronomical Journal Astronomical Observatory, Department of Astronomy, Belgrade, 2008 (2000), 161, Seite 9-13 (DE-627)538218460 (DE-600)2378699-1 18209289 nnns year:2000 number:161 pages:9-13 https://doi.org/10.2298/SAJ0061009M kostenfrei https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf kostenfrei https://doaj.org/toc/1450-698X Journal toc kostenfrei https://doaj.org/toc/1820-9289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2000 161 9-13 |
allfields_unstemmed |
10.2298/SAJ0061009M doi (DE-627)DOAJ038873605 (DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646 DE-627 ger DE-627 rakwb eng QB1-991 Mioc V. verfasserin aut Stability of the relative equilibria in the generalized J2 problem 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. Astronomy Stavinschi M. verfasserin aut In Serbian Astronomical Journal Astronomical Observatory, Department of Astronomy, Belgrade, 2008 (2000), 161, Seite 9-13 (DE-627)538218460 (DE-600)2378699-1 18209289 nnns year:2000 number:161 pages:9-13 https://doi.org/10.2298/SAJ0061009M kostenfrei https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf kostenfrei https://doaj.org/toc/1450-698X Journal toc kostenfrei https://doaj.org/toc/1820-9289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2000 161 9-13 |
allfieldsGer |
10.2298/SAJ0061009M doi (DE-627)DOAJ038873605 (DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646 DE-627 ger DE-627 rakwb eng QB1-991 Mioc V. verfasserin aut Stability of the relative equilibria in the generalized J2 problem 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. Astronomy Stavinschi M. verfasserin aut In Serbian Astronomical Journal Astronomical Observatory, Department of Astronomy, Belgrade, 2008 (2000), 161, Seite 9-13 (DE-627)538218460 (DE-600)2378699-1 18209289 nnns year:2000 number:161 pages:9-13 https://doi.org/10.2298/SAJ0061009M kostenfrei https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf kostenfrei https://doaj.org/toc/1450-698X Journal toc kostenfrei https://doaj.org/toc/1820-9289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2000 161 9-13 |
allfieldsSound |
10.2298/SAJ0061009M doi (DE-627)DOAJ038873605 (DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646 DE-627 ger DE-627 rakwb eng QB1-991 Mioc V. verfasserin aut Stability of the relative equilibria in the generalized J2 problem 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. Astronomy Stavinschi M. verfasserin aut In Serbian Astronomical Journal Astronomical Observatory, Department of Astronomy, Belgrade, 2008 (2000), 161, Seite 9-13 (DE-627)538218460 (DE-600)2378699-1 18209289 nnns year:2000 number:161 pages:9-13 https://doi.org/10.2298/SAJ0061009M kostenfrei https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646 kostenfrei http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf kostenfrei https://doaj.org/toc/1450-698X Journal toc kostenfrei https://doaj.org/toc/1820-9289 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2000 161 9-13 |
language |
English |
source |
In Serbian Astronomical Journal (2000), 161, Seite 9-13 year:2000 number:161 pages:9-13 |
sourceStr |
In Serbian Astronomical Journal (2000), 161, Seite 9-13 year:2000 number:161 pages:9-13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Astronomy |
isfreeaccess_bool |
true |
container_title |
Serbian Astronomical Journal |
authorswithroles_txt_mv |
Mioc V. @@aut@@ Stavinschi M. @@aut@@ |
publishDateDaySort_date |
2000-01-01T00:00:00Z |
hierarchy_top_id |
538218460 |
id |
DOAJ038873605 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038873605</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308024403.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2000 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/SAJ0061009M</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038873605</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB1-991</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mioc V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability of the relative equilibria in the generalized J2 problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astronomy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stavinschi M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Serbian Astronomical Journal</subfield><subfield code="d">Astronomical Observatory, Department of Astronomy, Belgrade, 2008</subfield><subfield code="g">(2000), 161, Seite 9-13</subfield><subfield code="w">(DE-627)538218460</subfield><subfield code="w">(DE-600)2378699-1</subfield><subfield code="x">18209289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2000</subfield><subfield code="g">number:161</subfield><subfield code="g">pages:9-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/SAJ0061009M</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1450-698X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1820-9289</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2000</subfield><subfield code="e">161</subfield><subfield code="h">9-13</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mioc V. |
spellingShingle |
Mioc V. misc QB1-991 misc Astronomy Stability of the relative equilibria in the generalized J2 problem |
authorStr |
Mioc V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)538218460 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB1-991 |
illustrated |
Not Illustrated |
issn |
18209289 |
topic_title |
QB1-991 Stability of the relative equilibria in the generalized J2 problem |
topic |
misc QB1-991 misc Astronomy |
topic_unstemmed |
misc QB1-991 misc Astronomy |
topic_browse |
misc QB1-991 misc Astronomy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Serbian Astronomical Journal |
hierarchy_parent_id |
538218460 |
hierarchy_top_title |
Serbian Astronomical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)538218460 (DE-600)2378699-1 |
title |
Stability of the relative equilibria in the generalized J2 problem |
ctrlnum |
(DE-627)DOAJ038873605 (DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646 |
title_full |
Stability of the relative equilibria in the generalized J2 problem |
author_sort |
Mioc V. |
journal |
Serbian Astronomical Journal |
journalStr |
Serbian Astronomical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2000 |
contenttype_str_mv |
txt |
container_start_page |
9 |
author_browse |
Mioc V. Stavinschi M. |
class |
QB1-991 |
format_se |
Elektronische Aufsätze |
author-letter |
Mioc V. |
doi_str_mv |
10.2298/SAJ0061009M |
author2-role |
verfasserin |
title_sort |
stability of the relative equilibria in the generalized j2 problem |
callnumber |
QB1-991 |
title_auth |
Stability of the relative equilibria in the generalized J2 problem |
abstract |
For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. |
abstractGer |
For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. |
abstract_unstemmed |
For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
161 |
title_short |
Stability of the relative equilibria in the generalized J2 problem |
url |
https://doi.org/10.2298/SAJ0061009M https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646 http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf https://doaj.org/toc/1450-698X https://doaj.org/toc/1820-9289 |
remote_bool |
true |
author2 |
Stavinschi M. |
author2Str |
Stavinschi M. |
ppnlink |
538218460 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2298/SAJ0061009M |
callnumber-a |
QB1-991 |
up_date |
2024-07-03T20:22:07.157Z |
_version_ |
1803590699225972736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ038873605</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308024403.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2000 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/SAJ0061009M</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ038873605</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb37e141fb8ef41408523b08f3ad9a646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB1-991</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mioc V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability of the relative equilibria in the generalized J2 problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a large class of concrete astronomical situations, the motion of celestial bodies is modelled by dynamical systems associated to a potential function α/r + εU (r = distance between particles, α = real constant, ε = real small parameter, U = perturbing potential). In this paper the nonlinear stability of the relative equilibrium orbits corresponding to such a potential is being investigated using a less usual method, which combines a block diagonalization technique with the reduction procedure. The test points out certain nonlinearly stable orbits, and is inconclusive for the remaining equilibria. The latter ones are treated via linearization; all of them prove instability. The nonlinearly stable orbits remain stable under any perturbation that preserves the conserved momentum.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astronomy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stavinschi M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Serbian Astronomical Journal</subfield><subfield code="d">Astronomical Observatory, Department of Astronomy, Belgrade, 2008</subfield><subfield code="g">(2000), 161, Seite 9-13</subfield><subfield code="w">(DE-627)538218460</subfield><subfield code="w">(DE-600)2378699-1</subfield><subfield code="x">18209289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2000</subfield><subfield code="g">number:161</subfield><subfield code="g">pages:9-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/SAJ0061009M</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b37e141fb8ef41408523b08f3ad9a646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/1450-698X/2000/1450-698X0061009M.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1450-698X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1820-9289</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2000</subfield><subfield code="e">161</subfield><subfield code="h">9-13</subfield></datafield></record></collection>
|
score |
7.401355 |