Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers
Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivatin...
Ausführliche Beschreibung
Autor*in: |
Martin Liptay [verfasserIn] Joana S. Barbosa [verfasserIn] Sven Rottenberg [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Oncology - Frontiers Media S.A., 2012, 10(2020) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 |
Links: |
---|
DOI / URN: |
10.3389/fonc.2020.00670 |
---|
Katalog-ID: |
DOAJ039024326 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ039024326 | ||
003 | DE-627 | ||
005 | 20230308025116.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fonc.2020.00670 |2 doi | |
035 | |a (DE-627)DOAJ039024326 | ||
035 | |a (DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Martin Liptay |e verfasserin |4 aut | |
245 | 1 | 0 | |a Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. | ||
650 | 4 | |a DNA replication | |
650 | 4 | |a replication fork | |
650 | 4 | |a chemotherapy | |
650 | 4 | |a drug resistance | |
650 | 4 | |a DNA damage response | |
650 | 4 | |a DNA damage tolerance | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Joana S. Barbosa |e verfasserin |4 aut | |
700 | 0 | |a Sven Rottenberg |e verfasserin |4 aut | |
700 | 0 | |a Sven Rottenberg |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Oncology |d Frontiers Media S.A., 2012 |g 10(2020) |w (DE-627)684965518 |w (DE-600)2649216-7 |x 2234943X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.3389/fonc.2020.00670 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2234-943X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |
author_variant |
m l ml j s b jsb s r sr s r sr |
---|---|
matchkey_str |
article:2234943X:2020----::elctofrrmdlnadhrpecpidaaaeep |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RC |
publishDate |
2020 |
allfields |
10.3389/fonc.2020.00670 doi (DE-627)DOAJ039024326 (DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f DE-627 ger DE-627 rakwb eng RC254-282 Martin Liptay verfasserin aut Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. DNA replication replication fork chemotherapy drug resistance DNA damage response DNA damage tolerance Neoplasms. Tumors. Oncology. Including cancer and carcinogens Joana S. Barbosa verfasserin aut Sven Rottenberg verfasserin aut Sven Rottenberg verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.00670 kostenfrei https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f kostenfrei https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
spelling |
10.3389/fonc.2020.00670 doi (DE-627)DOAJ039024326 (DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f DE-627 ger DE-627 rakwb eng RC254-282 Martin Liptay verfasserin aut Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. DNA replication replication fork chemotherapy drug resistance DNA damage response DNA damage tolerance Neoplasms. Tumors. Oncology. Including cancer and carcinogens Joana S. Barbosa verfasserin aut Sven Rottenberg verfasserin aut Sven Rottenberg verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.00670 kostenfrei https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f kostenfrei https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfields_unstemmed |
10.3389/fonc.2020.00670 doi (DE-627)DOAJ039024326 (DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f DE-627 ger DE-627 rakwb eng RC254-282 Martin Liptay verfasserin aut Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. DNA replication replication fork chemotherapy drug resistance DNA damage response DNA damage tolerance Neoplasms. Tumors. Oncology. Including cancer and carcinogens Joana S. Barbosa verfasserin aut Sven Rottenberg verfasserin aut Sven Rottenberg verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.00670 kostenfrei https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f kostenfrei https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfieldsGer |
10.3389/fonc.2020.00670 doi (DE-627)DOAJ039024326 (DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f DE-627 ger DE-627 rakwb eng RC254-282 Martin Liptay verfasserin aut Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. DNA replication replication fork chemotherapy drug resistance DNA damage response DNA damage tolerance Neoplasms. Tumors. Oncology. Including cancer and carcinogens Joana S. Barbosa verfasserin aut Sven Rottenberg verfasserin aut Sven Rottenberg verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.00670 kostenfrei https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f kostenfrei https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfieldsSound |
10.3389/fonc.2020.00670 doi (DE-627)DOAJ039024326 (DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f DE-627 ger DE-627 rakwb eng RC254-282 Martin Liptay verfasserin aut Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. DNA replication replication fork chemotherapy drug resistance DNA damage response DNA damage tolerance Neoplasms. Tumors. Oncology. Including cancer and carcinogens Joana S. Barbosa verfasserin aut Sven Rottenberg verfasserin aut Sven Rottenberg verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 10(2020) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:10 year:2020 https://doi.org/10.3389/fonc.2020.00670 kostenfrei https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f kostenfrei https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
language |
English |
source |
In Frontiers in Oncology 10(2020) volume:10 year:2020 |
sourceStr |
In Frontiers in Oncology 10(2020) volume:10 year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DNA replication replication fork chemotherapy drug resistance DNA damage response DNA damage tolerance Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Frontiers in Oncology |
authorswithroles_txt_mv |
Martin Liptay @@aut@@ Joana S. Barbosa @@aut@@ Sven Rottenberg @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
684965518 |
id |
DOAJ039024326 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039024326</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308025116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fonc.2020.00670</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039024326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Martin Liptay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA replication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">replication fork</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drug resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA damage response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA damage tolerance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joana S. Barbosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sven Rottenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sven Rottenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Oncology</subfield><subfield code="d">Frontiers Media S.A., 2012</subfield><subfield code="g">10(2020)</subfield><subfield code="w">(DE-627)684965518</subfield><subfield code="w">(DE-600)2649216-7</subfield><subfield code="x">2234943X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fonc.2020.00670</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Martin Liptay |
spellingShingle |
Martin Liptay misc RC254-282 misc DNA replication misc replication fork misc chemotherapy misc drug resistance misc DNA damage response misc DNA damage tolerance misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers |
authorStr |
Martin Liptay |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)684965518 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
2234943X |
topic_title |
RC254-282 Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers DNA replication replication fork chemotherapy drug resistance DNA damage response DNA damage tolerance |
topic |
misc RC254-282 misc DNA replication misc replication fork misc chemotherapy misc drug resistance misc DNA damage response misc DNA damage tolerance misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc DNA replication misc replication fork misc chemotherapy misc drug resistance misc DNA damage response misc DNA damage tolerance misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc DNA replication misc replication fork misc chemotherapy misc drug resistance misc DNA damage response misc DNA damage tolerance misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Oncology |
hierarchy_parent_id |
684965518 |
hierarchy_top_title |
Frontiers in Oncology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)684965518 (DE-600)2649216-7 |
title |
Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers |
ctrlnum |
(DE-627)DOAJ039024326 (DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f |
title_full |
Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers |
author_sort |
Martin Liptay |
journal |
Frontiers in Oncology |
journalStr |
Frontiers in Oncology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Martin Liptay Joana S. Barbosa Sven Rottenberg |
container_volume |
10 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Martin Liptay |
doi_str_mv |
10.3389/fonc.2020.00670 |
author2-role |
verfasserin |
title_sort |
replication fork remodeling and therapy escape in dna damage response-deficient cancers |
callnumber |
RC254-282 |
title_auth |
Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers |
abstract |
Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. |
abstractGer |
Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. |
abstract_unstemmed |
Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers |
url |
https://doi.org/10.3389/fonc.2020.00670 https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full https://doaj.org/toc/2234-943X |
remote_bool |
true |
author2 |
Joana S. Barbosa Sven Rottenberg |
author2Str |
Joana S. Barbosa Sven Rottenberg |
ppnlink |
684965518 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fonc.2020.00670 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T21:11:45.032Z |
_version_ |
1803593821763665920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039024326</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308025116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fonc.2020.00670</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039024326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce4eca62262c40539d3dd6b15ba7b02f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Martin Liptay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA replication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">replication fork</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drug resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA damage response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA damage tolerance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joana S. Barbosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sven Rottenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sven Rottenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Oncology</subfield><subfield code="d">Frontiers Media S.A., 2012</subfield><subfield code="g">10(2020)</subfield><subfield code="w">(DE-627)684965518</subfield><subfield code="w">(DE-600)2649216-7</subfield><subfield code="x">2234943X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fonc.2020.00670</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce4eca62262c40539d3dd6b15ba7b02f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fonc.2020.00670/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.400732 |