The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT
Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta...
Ausführliche Beschreibung
Autor*in: |
Xiao Liu [verfasserIn] Huaican Chen [verfasserIn] Jianfei Tong [verfasserIn] Wenhao He [verfasserIn] Xujing Li [verfasserIn] Tianjiao Liang [verfasserIn] Yuhong Li [verfasserIn] Wen Yin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 9(2019), 8, p 1107 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2019 ; number:8, p 1107 |
Links: |
---|
DOI / URN: |
10.3390/nano9081107 |
---|
Katalog-ID: |
DOAJ039387518 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ039387518 | ||
003 | DE-627 | ||
005 | 20230308030944.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano9081107 |2 doi | |
035 | |a (DE-627)DOAJ039387518 | ||
035 | |a (DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Xiao Liu |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. | ||
650 | 4 | |a BCC/BCC bilayer | |
650 | 4 | |a H solution energy | |
650 | 4 | |a electron density | |
650 | 4 | |a diffusion barrier | |
650 | 4 | |a hydrogen bubble | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Huaican Chen |e verfasserin |4 aut | |
700 | 0 | |a Jianfei Tong |e verfasserin |4 aut | |
700 | 0 | |a Wenhao He |e verfasserin |4 aut | |
700 | 0 | |a Xujing Li |e verfasserin |4 aut | |
700 | 0 | |a Tianjiao Liang |e verfasserin |4 aut | |
700 | 0 | |a Yuhong Li |e verfasserin |4 aut | |
700 | 0 | |a Wen Yin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 9(2019), 8, p 1107 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2019 |g number:8, p 1107 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano9081107 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/9/8/1107 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2019 |e 8, p 1107 |
author_variant |
x l xl h c hc j t jt w h wh x l xl t l tl y l yl w y wy |
---|---|
matchkey_str |
article:20794991:2019----::hkntceairohmuiisnhltblyrplctofr |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QD |
publishDate |
2019 |
allfields |
10.3390/nano9081107 doi (DE-627)DOAJ039387518 (DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb DE-627 ger DE-627 rakwb eng QD1-999 Xiao Liu verfasserin aut The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. BCC/BCC bilayer H solution energy electron density diffusion barrier hydrogen bubble Chemistry Huaican Chen verfasserin aut Jianfei Tong verfasserin aut Wenhao He verfasserin aut Xujing Li verfasserin aut Tianjiao Liang verfasserin aut Yuhong Li verfasserin aut Wen Yin verfasserin aut In Nanomaterials MDPI AG, 2012 9(2019), 8, p 1107 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:9 year:2019 number:8, p 1107 https://doi.org/10.3390/nano9081107 kostenfrei https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb kostenfrei https://www.mdpi.com/2079-4991/9/8/1107 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 8, p 1107 |
spelling |
10.3390/nano9081107 doi (DE-627)DOAJ039387518 (DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb DE-627 ger DE-627 rakwb eng QD1-999 Xiao Liu verfasserin aut The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. BCC/BCC bilayer H solution energy electron density diffusion barrier hydrogen bubble Chemistry Huaican Chen verfasserin aut Jianfei Tong verfasserin aut Wenhao He verfasserin aut Xujing Li verfasserin aut Tianjiao Liang verfasserin aut Yuhong Li verfasserin aut Wen Yin verfasserin aut In Nanomaterials MDPI AG, 2012 9(2019), 8, p 1107 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:9 year:2019 number:8, p 1107 https://doi.org/10.3390/nano9081107 kostenfrei https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb kostenfrei https://www.mdpi.com/2079-4991/9/8/1107 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 8, p 1107 |
allfields_unstemmed |
10.3390/nano9081107 doi (DE-627)DOAJ039387518 (DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb DE-627 ger DE-627 rakwb eng QD1-999 Xiao Liu verfasserin aut The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. BCC/BCC bilayer H solution energy electron density diffusion barrier hydrogen bubble Chemistry Huaican Chen verfasserin aut Jianfei Tong verfasserin aut Wenhao He verfasserin aut Xujing Li verfasserin aut Tianjiao Liang verfasserin aut Yuhong Li verfasserin aut Wen Yin verfasserin aut In Nanomaterials MDPI AG, 2012 9(2019), 8, p 1107 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:9 year:2019 number:8, p 1107 https://doi.org/10.3390/nano9081107 kostenfrei https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb kostenfrei https://www.mdpi.com/2079-4991/9/8/1107 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 8, p 1107 |
allfieldsGer |
10.3390/nano9081107 doi (DE-627)DOAJ039387518 (DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb DE-627 ger DE-627 rakwb eng QD1-999 Xiao Liu verfasserin aut The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. BCC/BCC bilayer H solution energy electron density diffusion barrier hydrogen bubble Chemistry Huaican Chen verfasserin aut Jianfei Tong verfasserin aut Wenhao He verfasserin aut Xujing Li verfasserin aut Tianjiao Liang verfasserin aut Yuhong Li verfasserin aut Wen Yin verfasserin aut In Nanomaterials MDPI AG, 2012 9(2019), 8, p 1107 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:9 year:2019 number:8, p 1107 https://doi.org/10.3390/nano9081107 kostenfrei https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb kostenfrei https://www.mdpi.com/2079-4991/9/8/1107 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 8, p 1107 |
allfieldsSound |
10.3390/nano9081107 doi (DE-627)DOAJ039387518 (DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb DE-627 ger DE-627 rakwb eng QD1-999 Xiao Liu verfasserin aut The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. BCC/BCC bilayer H solution energy electron density diffusion barrier hydrogen bubble Chemistry Huaican Chen verfasserin aut Jianfei Tong verfasserin aut Wenhao He verfasserin aut Xujing Li verfasserin aut Tianjiao Liang verfasserin aut Yuhong Li verfasserin aut Wen Yin verfasserin aut In Nanomaterials MDPI AG, 2012 9(2019), 8, p 1107 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:9 year:2019 number:8, p 1107 https://doi.org/10.3390/nano9081107 kostenfrei https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb kostenfrei https://www.mdpi.com/2079-4991/9/8/1107 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 8, p 1107 |
language |
English |
source |
In Nanomaterials 9(2019), 8, p 1107 volume:9 year:2019 number:8, p 1107 |
sourceStr |
In Nanomaterials 9(2019), 8, p 1107 volume:9 year:2019 number:8, p 1107 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
BCC/BCC bilayer H solution energy electron density diffusion barrier hydrogen bubble Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
Xiao Liu @@aut@@ Huaican Chen @@aut@@ Jianfei Tong @@aut@@ Wenhao He @@aut@@ Xujing Li @@aut@@ Tianjiao Liang @@aut@@ Yuhong Li @@aut@@ Wen Yin @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ039387518 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039387518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308030944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano9081107</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039387518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BCC/BCC bilayer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H solution energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electron density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diffusion barrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen bubble</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaican Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfei Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenhao He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xujing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianjiao Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuhong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">9(2019), 8, p 1107</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8, p 1107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano9081107</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/9/8/1107</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2019</subfield><subfield code="e">8, p 1107</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xiao Liu |
spellingShingle |
Xiao Liu misc QD1-999 misc BCC/BCC bilayer misc H solution energy misc electron density misc diffusion barrier misc hydrogen bubble misc Chemistry The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT |
authorStr |
Xiao Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT BCC/BCC bilayer H solution energy electron density diffusion barrier hydrogen bubble |
topic |
misc QD1-999 misc BCC/BCC bilayer misc H solution energy misc electron density misc diffusion barrier misc hydrogen bubble misc Chemistry |
topic_unstemmed |
misc QD1-999 misc BCC/BCC bilayer misc H solution energy misc electron density misc diffusion barrier misc hydrogen bubble misc Chemistry |
topic_browse |
misc QD1-999 misc BCC/BCC bilayer misc H solution energy misc electron density misc diffusion barrier misc hydrogen bubble misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT |
ctrlnum |
(DE-627)DOAJ039387518 (DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb |
title_full |
The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT |
author_sort |
Xiao Liu |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Xiao Liu Huaican Chen Jianfei Tong Wenhao He Xujing Li Tianjiao Liang Yuhong Li Wen Yin |
container_volume |
9 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiao Liu |
doi_str_mv |
10.3390/nano9081107 |
author2-role |
verfasserin |
title_sort |
kinetic behaviors of h impurities in the li/ta bilayer: application for the accelerator-based bnct |
callnumber |
QD1-999 |
title_auth |
The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT |
abstract |
Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. |
abstractGer |
Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. |
abstract_unstemmed |
Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1107 |
title_short |
The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT |
url |
https://doi.org/10.3390/nano9081107 https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb https://www.mdpi.com/2079-4991/9/8/1107 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Huaican Chen Jianfei Tong Wenhao He Xujing Li Tianjiao Liang Yuhong Li Wen Yin |
author2Str |
Huaican Chen Jianfei Tong Wenhao He Xujing Li Tianjiao Liang Yuhong Li Wen Yin |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano9081107 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T23:06:27.487Z |
_version_ |
1803601038535557120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039387518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308030944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano9081107</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039387518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbc95aa82c83849e988d34ada9c9d73fb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BCC/BCC bilayer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H solution energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electron density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diffusion barrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen bubble</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaican Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfei Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenhao He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xujing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianjiao Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuhong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">9(2019), 8, p 1107</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8, p 1107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano9081107</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bc95aa82c83849e988d34ada9c9d73fb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/9/8/1107</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2019</subfield><subfield code="e">8, p 1107</subfield></datafield></record></collection>
|
score |
7.401066 |