Research on the Realization Path of Railway Intelligent Construction Based on System Engineering
The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, managem...
Ausführliche Beschreibung
Autor*in: |
You Wang [verfasserIn] Ziwei Wang [verfasserIn] Tingting Ma [verfasserIn] Guowei Li [verfasserIn] Huixia Tie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 14(2022), 11, p 6945 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:11, p 6945 |
Links: |
---|
DOI / URN: |
10.3390/su14116945 |
---|
Katalog-ID: |
DOAJ039646181 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ039646181 | ||
003 | DE-627 | ||
005 | 20240414210806.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su14116945 |2 doi | |
035 | |a (DE-627)DOAJ039646181 | ||
035 | |a (DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a You Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on the Realization Path of Railway Intelligent Construction Based on System Engineering |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. | ||
650 | 4 | |a railway engineering | |
650 | 4 | |a intelligent construction | |
650 | 4 | |a BIM | |
650 | 4 | |a big data | |
650 | 4 | |a Internet of Things | |
650 | 4 | |a cloud computing | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Ziwei Wang |e verfasserin |4 aut | |
700 | 0 | |a Tingting Ma |e verfasserin |4 aut | |
700 | 0 | |a Guowei Li |e verfasserin |4 aut | |
700 | 0 | |a Huixia Tie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 14(2022), 11, p 6945 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:11, p 6945 |
856 | 4 | 0 | |u https://doi.org/10.3390/su14116945 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/14/11/6945 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 11, p 6945 |
author_variant |
y w yw z w zw t m tm g l gl h t ht |
---|---|
matchkey_str |
article:20711050:2022----::eerhnhraiainahfalaitlietosrcina |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TD |
publishDate |
2022 |
allfields |
10.3390/su14116945 doi (DE-627)DOAJ039646181 (DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 You Wang verfasserin aut Research on the Realization Path of Railway Intelligent Construction Based on System Engineering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. railway engineering intelligent construction BIM big data Internet of Things cloud computing Environmental effects of industries and plants Renewable energy sources Environmental sciences Ziwei Wang verfasserin aut Tingting Ma verfasserin aut Guowei Li verfasserin aut Huixia Tie verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6945 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6945 https://doi.org/10.3390/su14116945 kostenfrei https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d kostenfrei https://www.mdpi.com/2071-1050/14/11/6945 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6945 |
spelling |
10.3390/su14116945 doi (DE-627)DOAJ039646181 (DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 You Wang verfasserin aut Research on the Realization Path of Railway Intelligent Construction Based on System Engineering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. railway engineering intelligent construction BIM big data Internet of Things cloud computing Environmental effects of industries and plants Renewable energy sources Environmental sciences Ziwei Wang verfasserin aut Tingting Ma verfasserin aut Guowei Li verfasserin aut Huixia Tie verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6945 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6945 https://doi.org/10.3390/su14116945 kostenfrei https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d kostenfrei https://www.mdpi.com/2071-1050/14/11/6945 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6945 |
allfields_unstemmed |
10.3390/su14116945 doi (DE-627)DOAJ039646181 (DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 You Wang verfasserin aut Research on the Realization Path of Railway Intelligent Construction Based on System Engineering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. railway engineering intelligent construction BIM big data Internet of Things cloud computing Environmental effects of industries and plants Renewable energy sources Environmental sciences Ziwei Wang verfasserin aut Tingting Ma verfasserin aut Guowei Li verfasserin aut Huixia Tie verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6945 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6945 https://doi.org/10.3390/su14116945 kostenfrei https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d kostenfrei https://www.mdpi.com/2071-1050/14/11/6945 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6945 |
allfieldsGer |
10.3390/su14116945 doi (DE-627)DOAJ039646181 (DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 You Wang verfasserin aut Research on the Realization Path of Railway Intelligent Construction Based on System Engineering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. railway engineering intelligent construction BIM big data Internet of Things cloud computing Environmental effects of industries and plants Renewable energy sources Environmental sciences Ziwei Wang verfasserin aut Tingting Ma verfasserin aut Guowei Li verfasserin aut Huixia Tie verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6945 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6945 https://doi.org/10.3390/su14116945 kostenfrei https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d kostenfrei https://www.mdpi.com/2071-1050/14/11/6945 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6945 |
allfieldsSound |
10.3390/su14116945 doi (DE-627)DOAJ039646181 (DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 You Wang verfasserin aut Research on the Realization Path of Railway Intelligent Construction Based on System Engineering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. railway engineering intelligent construction BIM big data Internet of Things cloud computing Environmental effects of industries and plants Renewable energy sources Environmental sciences Ziwei Wang verfasserin aut Tingting Ma verfasserin aut Guowei Li verfasserin aut Huixia Tie verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6945 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6945 https://doi.org/10.3390/su14116945 kostenfrei https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d kostenfrei https://www.mdpi.com/2071-1050/14/11/6945 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6945 |
language |
English |
source |
In Sustainability 14(2022), 11, p 6945 volume:14 year:2022 number:11, p 6945 |
sourceStr |
In Sustainability 14(2022), 11, p 6945 volume:14 year:2022 number:11, p 6945 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
railway engineering intelligent construction BIM big data Internet of Things cloud computing Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
You Wang @@aut@@ Ziwei Wang @@aut@@ Tingting Ma @@aut@@ Guowei Li @@aut@@ Huixia Tie @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ039646181 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039646181</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414210806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su14116945</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039646181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">You Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on the Realization Path of Railway Intelligent Construction Based on System Engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">railway engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intelligent construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of Things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud computing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingting Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guowei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huixia Tie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 11, p 6945</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 6945</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su14116945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/11/6945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 6945</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
You Wang |
spellingShingle |
You Wang misc TD194-195 misc TJ807-830 misc GE1-350 misc railway engineering misc intelligent construction misc BIM misc big data misc Internet of Things misc cloud computing misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Research on the Realization Path of Railway Intelligent Construction Based on System Engineering |
authorStr |
You Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Research on the Realization Path of Railway Intelligent Construction Based on System Engineering railway engineering intelligent construction BIM big data Internet of Things cloud computing |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc railway engineering misc intelligent construction misc BIM misc big data misc Internet of Things misc cloud computing misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc railway engineering misc intelligent construction misc BIM misc big data misc Internet of Things misc cloud computing misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc railway engineering misc intelligent construction misc BIM misc big data misc Internet of Things misc cloud computing misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Research on the Realization Path of Railway Intelligent Construction Based on System Engineering |
ctrlnum |
(DE-627)DOAJ039646181 (DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d |
title_full |
Research on the Realization Path of Railway Intelligent Construction Based on System Engineering |
author_sort |
You Wang |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
You Wang Ziwei Wang Tingting Ma Guowei Li Huixia Tie |
container_volume |
14 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
You Wang |
doi_str_mv |
10.3390/su14116945 |
author2-role |
verfasserin |
title_sort |
research on the realization path of railway intelligent construction based on system engineering |
callnumber |
TD194-195 |
title_auth |
Research on the Realization Path of Railway Intelligent Construction Based on System Engineering |
abstract |
The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. |
abstractGer |
The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. |
abstract_unstemmed |
The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 6945 |
title_short |
Research on the Realization Path of Railway Intelligent Construction Based on System Engineering |
url |
https://doi.org/10.3390/su14116945 https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d https://www.mdpi.com/2071-1050/14/11/6945 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Ziwei Wang Tingting Ma Guowei Li Huixia Tie |
author2Str |
Ziwei Wang Tingting Ma Guowei Li Huixia Tie |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su14116945 |
callnumber-a |
TD194-195 |
up_date |
2024-07-04T00:11:58.079Z |
_version_ |
1803605160055799808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039646181</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414210806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su14116945</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039646181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9e816d66c5f479a962532b3f7c2632d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">You Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on the Realization Path of Railway Intelligent Construction Based on System Engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The implementation of railway intelligent construction is the need of national strategic development and the demand of society. Based on the idea of system engineering, this paper proposes a three-dimensional railway intelligent construction system architecture composed of a full life cycle, management level and technical support. Based on this architecture, a “three-step” implementation path is proposed. Then, it analyzes the technology support framework required in the architecture based on Building Information Modeling (BIM), incorporating Global Positioning System (GPS) and Geographic Information System (GIS), algorithmic prediction and machine learning technology, Internet of Things (IoT) and artificial intelligence technology, big data and cloud computing technology, and the application of railway intelligent construction system architecture is analyzed by taking a railway tunnel project in Zhejiang Province of China as an example. Finally, it discusses the problems that may be encountered in the implementation of railway intelligent construction and puts forward relevant suggestions. The results show that railway intelligent construction is an essential way. At present, China’s railway intelligent construction is still in the primary stage. The design organization should do a good job in the top-level design and accumulate sufficient data for the later stage. All parties in the middle stage of construction should do a good job in the induction and integration of information and accumulate sufficient experience. In this way, we can integrate into the advanced stage and give full play to the advantages of software and hardware integrated applications such as BIM, IoT, big data, cloud computing and intelligent devices so as to truly realize the intellectualization and modernization of railway construction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">railway engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intelligent construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of Things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud computing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tingting Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guowei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huixia Tie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 11, p 6945</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 6945</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su14116945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9e816d66c5f479a962532b3f7c2632d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/11/6945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 6945</subfield></datafield></record></collection>
|
score |
7.4016 |