Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice
Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted t...
Ausführliche Beschreibung
Autor*in: |
Changmeng Cui [verfasserIn] Changshui Wang [verfasserIn] Shasha Han [verfasserIn] Dingyi Yu [verfasserIn] Li Zhu [verfasserIn] Pei Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
gas chromatography–mass spectrometry |
---|
Übergeordnetes Werk: |
In: FASEB BioAdvances - Wiley, 2019, 4(2022), 8, Seite 560-572 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2022 ; number:8 ; pages:560-572 |
Links: |
---|
DOI / URN: |
10.1096/fba.2021-00152 |
---|
Katalog-ID: |
DOAJ039868028 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ039868028 | ||
003 | DE-627 | ||
005 | 20230308032920.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1096/fba.2021-00152 |2 doi | |
035 | |a (DE-627)DOAJ039868028 | ||
035 | |a (DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Changmeng Cui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. | ||
650 | 4 | |a biomarker | |
650 | 4 | |a gas chromatography–mass spectrometry | |
650 | 4 | |a high‐fructose diet | |
650 | 4 | |a metabolomics | |
650 | 4 | |a orthogonal partial least squared‐discriminant analysis | |
650 | 4 | |a principal component analysis | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Changshui Wang |e verfasserin |4 aut | |
700 | 0 | |a Shasha Han |e verfasserin |4 aut | |
700 | 0 | |a Dingyi Yu |e verfasserin |4 aut | |
700 | 0 | |a Li Zhu |e verfasserin |4 aut | |
700 | 0 | |a Pei Jiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t FASEB BioAdvances |d Wiley, 2019 |g 4(2022), 8, Seite 560-572 |w (DE-627)1663403198 |w (DE-600)2969880-7 |x 25739832 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2022 |g number:8 |g pages:560-572 |
856 | 4 | 0 | |u https://doi.org/10.1096/fba.2021-00152 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1096/fba.2021-00152 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2573-9832 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2022 |e 8 |h 560-572 |
author_variant |
c c cc c w cw s h sh d y dy l z lz p j pj |
---|---|
matchkey_str |
article:25739832:2022----::matflntrhgfutsdeosseimtb |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.1096/fba.2021-00152 doi (DE-627)DOAJ039868028 (DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d DE-627 ger DE-627 rakwb eng QH301-705.5 Changmeng Cui verfasserin aut Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. biomarker gas chromatography–mass spectrometry high‐fructose diet metabolomics orthogonal partial least squared‐discriminant analysis principal component analysis Biology (General) Changshui Wang verfasserin aut Shasha Han verfasserin aut Dingyi Yu verfasserin aut Li Zhu verfasserin aut Pei Jiang verfasserin aut In FASEB BioAdvances Wiley, 2019 4(2022), 8, Seite 560-572 (DE-627)1663403198 (DE-600)2969880-7 25739832 nnns volume:4 year:2022 number:8 pages:560-572 https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d kostenfrei https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/toc/2573-9832 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 8 560-572 |
spelling |
10.1096/fba.2021-00152 doi (DE-627)DOAJ039868028 (DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d DE-627 ger DE-627 rakwb eng QH301-705.5 Changmeng Cui verfasserin aut Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. biomarker gas chromatography–mass spectrometry high‐fructose diet metabolomics orthogonal partial least squared‐discriminant analysis principal component analysis Biology (General) Changshui Wang verfasserin aut Shasha Han verfasserin aut Dingyi Yu verfasserin aut Li Zhu verfasserin aut Pei Jiang verfasserin aut In FASEB BioAdvances Wiley, 2019 4(2022), 8, Seite 560-572 (DE-627)1663403198 (DE-600)2969880-7 25739832 nnns volume:4 year:2022 number:8 pages:560-572 https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d kostenfrei https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/toc/2573-9832 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 8 560-572 |
allfields_unstemmed |
10.1096/fba.2021-00152 doi (DE-627)DOAJ039868028 (DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d DE-627 ger DE-627 rakwb eng QH301-705.5 Changmeng Cui verfasserin aut Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. biomarker gas chromatography–mass spectrometry high‐fructose diet metabolomics orthogonal partial least squared‐discriminant analysis principal component analysis Biology (General) Changshui Wang verfasserin aut Shasha Han verfasserin aut Dingyi Yu verfasserin aut Li Zhu verfasserin aut Pei Jiang verfasserin aut In FASEB BioAdvances Wiley, 2019 4(2022), 8, Seite 560-572 (DE-627)1663403198 (DE-600)2969880-7 25739832 nnns volume:4 year:2022 number:8 pages:560-572 https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d kostenfrei https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/toc/2573-9832 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 8 560-572 |
allfieldsGer |
10.1096/fba.2021-00152 doi (DE-627)DOAJ039868028 (DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d DE-627 ger DE-627 rakwb eng QH301-705.5 Changmeng Cui verfasserin aut Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. biomarker gas chromatography–mass spectrometry high‐fructose diet metabolomics orthogonal partial least squared‐discriminant analysis principal component analysis Biology (General) Changshui Wang verfasserin aut Shasha Han verfasserin aut Dingyi Yu verfasserin aut Li Zhu verfasserin aut Pei Jiang verfasserin aut In FASEB BioAdvances Wiley, 2019 4(2022), 8, Seite 560-572 (DE-627)1663403198 (DE-600)2969880-7 25739832 nnns volume:4 year:2022 number:8 pages:560-572 https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d kostenfrei https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/toc/2573-9832 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 8 560-572 |
allfieldsSound |
10.1096/fba.2021-00152 doi (DE-627)DOAJ039868028 (DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d DE-627 ger DE-627 rakwb eng QH301-705.5 Changmeng Cui verfasserin aut Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. biomarker gas chromatography–mass spectrometry high‐fructose diet metabolomics orthogonal partial least squared‐discriminant analysis principal component analysis Biology (General) Changshui Wang verfasserin aut Shasha Han verfasserin aut Dingyi Yu verfasserin aut Li Zhu verfasserin aut Pei Jiang verfasserin aut In FASEB BioAdvances Wiley, 2019 4(2022), 8, Seite 560-572 (DE-627)1663403198 (DE-600)2969880-7 25739832 nnns volume:4 year:2022 number:8 pages:560-572 https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d kostenfrei https://doi.org/10.1096/fba.2021-00152 kostenfrei https://doaj.org/toc/2573-9832 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 8 560-572 |
language |
English |
source |
In FASEB BioAdvances 4(2022), 8, Seite 560-572 volume:4 year:2022 number:8 pages:560-572 |
sourceStr |
In FASEB BioAdvances 4(2022), 8, Seite 560-572 volume:4 year:2022 number:8 pages:560-572 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
biomarker gas chromatography–mass spectrometry high‐fructose diet metabolomics orthogonal partial least squared‐discriminant analysis principal component analysis Biology (General) |
isfreeaccess_bool |
true |
container_title |
FASEB BioAdvances |
authorswithroles_txt_mv |
Changmeng Cui @@aut@@ Changshui Wang @@aut@@ Shasha Han @@aut@@ Dingyi Yu @@aut@@ Li Zhu @@aut@@ Pei Jiang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1663403198 |
id |
DOAJ039868028 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039868028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308032920.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1096/fba.2021-00152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039868028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Changmeng Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomarker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas chromatography–mass spectrometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high‐fructose diet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">orthogonal partial least squared‐discriminant analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">principal component analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changshui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shasha Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dingyi Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pei Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">FASEB BioAdvances</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">4(2022), 8, Seite 560-572</subfield><subfield code="w">(DE-627)1663403198</subfield><subfield code="w">(DE-600)2969880-7</subfield><subfield code="x">25739832</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:560-572</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1096/fba.2021-00152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1096/fba.2021-00152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2573-9832</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="h">560-572</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Changmeng Cui |
spellingShingle |
Changmeng Cui misc QH301-705.5 misc biomarker misc gas chromatography–mass spectrometry misc high‐fructose diet misc metabolomics misc orthogonal partial least squared‐discriminant analysis misc principal component analysis misc Biology (General) Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice |
authorStr |
Changmeng Cui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1663403198 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
25739832 |
topic_title |
QH301-705.5 Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice biomarker gas chromatography–mass spectrometry high‐fructose diet metabolomics orthogonal partial least squared‐discriminant analysis principal component analysis |
topic |
misc QH301-705.5 misc biomarker misc gas chromatography–mass spectrometry misc high‐fructose diet misc metabolomics misc orthogonal partial least squared‐discriminant analysis misc principal component analysis misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc biomarker misc gas chromatography–mass spectrometry misc high‐fructose diet misc metabolomics misc orthogonal partial least squared‐discriminant analysis misc principal component analysis misc Biology (General) |
topic_browse |
misc QH301-705.5 misc biomarker misc gas chromatography–mass spectrometry misc high‐fructose diet misc metabolomics misc orthogonal partial least squared‐discriminant analysis misc principal component analysis misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
FASEB BioAdvances |
hierarchy_parent_id |
1663403198 |
hierarchy_top_title |
FASEB BioAdvances |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1663403198 (DE-600)2969880-7 |
title |
Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice |
ctrlnum |
(DE-627)DOAJ039868028 (DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d |
title_full |
Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice |
author_sort |
Changmeng Cui |
journal |
FASEB BioAdvances |
journalStr |
FASEB BioAdvances |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
560 |
author_browse |
Changmeng Cui Changshui Wang Shasha Han Dingyi Yu Li Zhu Pei Jiang |
container_volume |
4 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Changmeng Cui |
doi_str_mv |
10.1096/fba.2021-00152 |
author2-role |
verfasserin |
title_sort |
impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice |
callnumber |
QH301-705.5 |
title_auth |
Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice |
abstract |
Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. |
abstractGer |
Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. |
abstract_unstemmed |
Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice |
url |
https://doi.org/10.1096/fba.2021-00152 https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d https://doaj.org/toc/2573-9832 |
remote_bool |
true |
author2 |
Changshui Wang Shasha Han Dingyi Yu Li Zhu Pei Jiang |
author2Str |
Changshui Wang Shasha Han Dingyi Yu Li Zhu Pei Jiang |
ppnlink |
1663403198 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1096/fba.2021-00152 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-04T01:03:18.630Z |
_version_ |
1803608390248693760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039868028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308032920.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1096/fba.2021-00152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039868028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3eed1e65b78d4a6b9f4a7b32c892143d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Changmeng Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of a long‐term high‐fructose diet on systemic metabolic profiles of mice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Evidence is mounting that chronic high‐fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long‐term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high‐fructose diet on metabolic profile. Four‐week‐old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared‐discriminant analysis (OPLS‐DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long‐term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomarker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas chromatography–mass spectrometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high‐fructose diet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">orthogonal partial least squared‐discriminant analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">principal component analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changshui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shasha Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dingyi Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pei Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">FASEB BioAdvances</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">4(2022), 8, Seite 560-572</subfield><subfield code="w">(DE-627)1663403198</subfield><subfield code="w">(DE-600)2969880-7</subfield><subfield code="x">25739832</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:560-572</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1096/fba.2021-00152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3eed1e65b78d4a6b9f4a7b32c892143d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1096/fba.2021-00152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2573-9832</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="h">560-572</subfield></datafield></record></collection>
|
score |
7.4012585 |