Multi-model impacts of climate change on pollution transport from global emission source regions
The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Projec...
Ausführliche Beschreibung
Autor*in: |
R. M. Doherty [verfasserIn] C. Orbe [verfasserIn] G. Zeng [verfasserIn] D. A. Plummer [verfasserIn] M. J. Prather [verfasserIn] O. Wild [verfasserIn] M. Lin [verfasserIn] D. T. Shindell [verfasserIn] I. A. Mackenzie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Übergeordnetes Werk: |
In: Atmospheric Chemistry and Physics - Copernicus Publications, 2003, 17(2017), Seite 14219-14237 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2017 ; pages:14219-14237 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5194/acp-17-14219-2017 |
---|
Katalog-ID: |
DOAJ039973115 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ039973115 | ||
003 | DE-627 | ||
005 | 20230308033348.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5194/acp-17-14219-2017 |2 doi | |
035 | |a (DE-627)DOAJ039973115 | ||
035 | |a (DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a R. M. Doherty |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-model impacts of climate change on pollution transport from global emission source regions |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. | ||
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a C. Orbe |e verfasserin |4 aut | |
700 | 0 | |a G. Zeng |e verfasserin |4 aut | |
700 | 0 | |a D. A. Plummer |e verfasserin |4 aut | |
700 | 0 | |a M. J. Prather |e verfasserin |4 aut | |
700 | 0 | |a O. Wild |e verfasserin |4 aut | |
700 | 0 | |a M. Lin |e verfasserin |4 aut | |
700 | 0 | |a M. Lin |e verfasserin |4 aut | |
700 | 0 | |a D. T. Shindell |e verfasserin |4 aut | |
700 | 0 | |a I. A. Mackenzie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmospheric Chemistry and Physics |d Copernicus Publications, 2003 |g 17(2017), Seite 14219-14237 |w (DE-627)092499996 |x 16807324 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2017 |g pages:14219-14237 |
856 | 4 | 0 | |u https://doi.org/10.5194/acp-17-14219-2017 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4 |z kostenfrei |
856 | 4 | 0 | |u https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7316 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7324 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_381 | ||
951 | |a AR | ||
952 | |d 17 |j 2017 |h 14219-14237 |
author_variant |
r m d rmd c o co g z gz d a p dap m j p mjp o w ow m l ml m l ml d t s dts i a m iam |
---|---|
matchkey_str |
article:16807324:2017----::utmdlmatociaehnenoltotasotrmlb |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QC |
publishDate |
2017 |
allfields |
10.5194/acp-17-14219-2017 doi (DE-627)DOAJ039973115 (DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 R. M. Doherty verfasserin aut Multi-model impacts of climate change on pollution transport from global emission source regions 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. Physics Chemistry C. Orbe verfasserin aut G. Zeng verfasserin aut D. A. Plummer verfasserin aut M. J. Prather verfasserin aut O. Wild verfasserin aut M. Lin verfasserin aut M. Lin verfasserin aut D. T. Shindell verfasserin aut I. A. Mackenzie verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 17(2017), Seite 14219-14237 (DE-627)092499996 16807324 nnns volume:17 year:2017 pages:14219-14237 https://doi.org/10.5194/acp-17-14219-2017 kostenfrei https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4 kostenfrei https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 17 2017 14219-14237 |
spelling |
10.5194/acp-17-14219-2017 doi (DE-627)DOAJ039973115 (DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 R. M. Doherty verfasserin aut Multi-model impacts of climate change on pollution transport from global emission source regions 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. Physics Chemistry C. Orbe verfasserin aut G. Zeng verfasserin aut D. A. Plummer verfasserin aut M. J. Prather verfasserin aut O. Wild verfasserin aut M. Lin verfasserin aut M. Lin verfasserin aut D. T. Shindell verfasserin aut I. A. Mackenzie verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 17(2017), Seite 14219-14237 (DE-627)092499996 16807324 nnns volume:17 year:2017 pages:14219-14237 https://doi.org/10.5194/acp-17-14219-2017 kostenfrei https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4 kostenfrei https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 17 2017 14219-14237 |
allfields_unstemmed |
10.5194/acp-17-14219-2017 doi (DE-627)DOAJ039973115 (DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 R. M. Doherty verfasserin aut Multi-model impacts of climate change on pollution transport from global emission source regions 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. Physics Chemistry C. Orbe verfasserin aut G. Zeng verfasserin aut D. A. Plummer verfasserin aut M. J. Prather verfasserin aut O. Wild verfasserin aut M. Lin verfasserin aut M. Lin verfasserin aut D. T. Shindell verfasserin aut I. A. Mackenzie verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 17(2017), Seite 14219-14237 (DE-627)092499996 16807324 nnns volume:17 year:2017 pages:14219-14237 https://doi.org/10.5194/acp-17-14219-2017 kostenfrei https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4 kostenfrei https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 17 2017 14219-14237 |
allfieldsGer |
10.5194/acp-17-14219-2017 doi (DE-627)DOAJ039973115 (DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 R. M. Doherty verfasserin aut Multi-model impacts of climate change on pollution transport from global emission source regions 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. Physics Chemistry C. Orbe verfasserin aut G. Zeng verfasserin aut D. A. Plummer verfasserin aut M. J. Prather verfasserin aut O. Wild verfasserin aut M. Lin verfasserin aut M. Lin verfasserin aut D. T. Shindell verfasserin aut I. A. Mackenzie verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 17(2017), Seite 14219-14237 (DE-627)092499996 16807324 nnns volume:17 year:2017 pages:14219-14237 https://doi.org/10.5194/acp-17-14219-2017 kostenfrei https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4 kostenfrei https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 17 2017 14219-14237 |
allfieldsSound |
10.5194/acp-17-14219-2017 doi (DE-627)DOAJ039973115 (DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 R. M. Doherty verfasserin aut Multi-model impacts of climate change on pollution transport from global emission source regions 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. Physics Chemistry C. Orbe verfasserin aut G. Zeng verfasserin aut D. A. Plummer verfasserin aut M. J. Prather verfasserin aut O. Wild verfasserin aut M. Lin verfasserin aut M. Lin verfasserin aut D. T. Shindell verfasserin aut I. A. Mackenzie verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 17(2017), Seite 14219-14237 (DE-627)092499996 16807324 nnns volume:17 year:2017 pages:14219-14237 https://doi.org/10.5194/acp-17-14219-2017 kostenfrei https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4 kostenfrei https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 17 2017 14219-14237 |
language |
English |
source |
In Atmospheric Chemistry and Physics 17(2017), Seite 14219-14237 volume:17 year:2017 pages:14219-14237 |
sourceStr |
In Atmospheric Chemistry and Physics 17(2017), Seite 14219-14237 volume:17 year:2017 pages:14219-14237 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Atmospheric Chemistry and Physics |
authorswithroles_txt_mv |
R. M. Doherty @@aut@@ C. Orbe @@aut@@ G. Zeng @@aut@@ D. A. Plummer @@aut@@ M. J. Prather @@aut@@ O. Wild @@aut@@ M. Lin @@aut@@ D. T. Shindell @@aut@@ I. A. Mackenzie @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
092499996 |
id |
DOAJ039973115 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039973115</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308033348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/acp-17-14219-2017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039973115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">R. M. Doherty</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-model impacts of climate change on pollution transport from global emission source regions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. Orbe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. A. Plummer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. J. Prather</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. T. Shindell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. A. Mackenzie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">17(2017), Seite 14219-14237</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:14219-14237</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/acp-17-14219-2017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2017</subfield><subfield code="h">14219-14237</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
R. M. Doherty |
spellingShingle |
R. M. Doherty misc QC1-999 misc QD1-999 misc Physics misc Chemistry Multi-model impacts of climate change on pollution transport from global emission source regions |
authorStr |
R. M. Doherty |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)092499996 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
16807324 |
topic_title |
QC1-999 QD1-999 Multi-model impacts of climate change on pollution transport from global emission source regions |
topic |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_unstemmed |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_browse |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmospheric Chemistry and Physics |
hierarchy_parent_id |
092499996 |
hierarchy_top_title |
Atmospheric Chemistry and Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)092499996 |
title |
Multi-model impacts of climate change on pollution transport from global emission source regions |
ctrlnum |
(DE-627)DOAJ039973115 (DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4 |
title_full |
Multi-model impacts of climate change on pollution transport from global emission source regions |
author_sort |
R. M. Doherty |
journal |
Atmospheric Chemistry and Physics |
journalStr |
Atmospheric Chemistry and Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
14219 |
author_browse |
R. M. Doherty C. Orbe G. Zeng D. A. Plummer M. J. Prather O. Wild M. Lin D. T. Shindell I. A. Mackenzie |
container_volume |
17 |
class |
QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
R. M. Doherty |
doi_str_mv |
10.5194/acp-17-14219-2017 |
author2-role |
verfasserin |
title_sort |
multi-model impacts of climate change on pollution transport from global emission source regions |
callnumber |
QC1-999 |
title_auth |
Multi-model impacts of climate change on pollution transport from global emission source regions |
abstract |
The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. |
abstractGer |
The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. |
abstract_unstemmed |
The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 |
title_short |
Multi-model impacts of climate change on pollution transport from global emission source regions |
url |
https://doi.org/10.5194/acp-17-14219-2017 https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4 https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 |
remote_bool |
true |
author2 |
C. Orbe G. Zeng D. A. Plummer M. J. Prather O. Wild M. Lin D. T. Shindell I. A. Mackenzie |
author2Str |
C. Orbe G. Zeng D. A. Plummer M. J. Prather O. Wild M. Lin D. T. Shindell I. A. Mackenzie |
ppnlink |
092499996 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5194/acp-17-14219-2017 |
callnumber-a |
QC1-999 |
up_date |
2024-07-04T01:27:45.268Z |
_version_ |
1803609928128004096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ039973115</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308033348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/acp-17-14219-2017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ039973115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ52bc59c7ddb14ed8ae4a208631aa3aa4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">R. M. Doherty</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-model impacts of climate change on pollution transport from global emission source regions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. Orbe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. A. Plummer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. J. Prather</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. T. Shindell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. A. Mackenzie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">17(2017), Seite 14219-14237</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:14219-14237</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/acp-17-14219-2017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/52bc59c7ddb14ed8ae4a208631aa3aa4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.atmos-chem-phys.net/17/14219/2017/acp-17-14219-2017.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2017</subfield><subfield code="h">14219-14237</subfield></datafield></record></collection>
|
score |
7.401764 |