Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes
Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate f...
Ausführliche Beschreibung
Autor*in: |
Guojuan Zhao [verfasserIn] Shengcheng Jiang [verfasserIn] Kai Dong [verfasserIn] Quanwang Xu [verfasserIn] Ziling Zhang [verfasserIn] Lei Lu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Machines - MDPI AG, 2013, 10(2022), 7, p 586 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:7, p 586 |
Links: |
---|
DOI / URN: |
10.3390/machines10070586 |
---|
Katalog-ID: |
DOAJ040244636 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ040244636 | ||
003 | DE-627 | ||
005 | 20240414084142.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/machines10070586 |2 doi | |
035 | |a (DE-627)DOAJ040244636 | ||
035 | |a (DE-599)DOAJ19597f3a30594bad832ee607a09b7f87 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Guojuan Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. | ||
650 | 4 | |a geometric error | |
650 | 4 | |a error compensation | |
650 | 4 | |a homogeneous coordinate transformation matrix | |
650 | 4 | |a Newton iteration | |
650 | 4 | |a four-axis machining tools | |
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Shengcheng Jiang |e verfasserin |4 aut | |
700 | 0 | |a Kai Dong |e verfasserin |4 aut | |
700 | 0 | |a Quanwang Xu |e verfasserin |4 aut | |
700 | 0 | |a Ziling Zhang |e verfasserin |4 aut | |
700 | 0 | |a Lei Lu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Machines |d MDPI AG, 2013 |g 10(2022), 7, p 586 |w (DE-627)73728823X |w (DE-600)2704328-9 |x 20751702 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:7, p 586 |
856 | 4 | 0 | |u https://doi.org/10.3390/machines10070586 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/19597f3a30594bad832ee607a09b7f87 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1702/10/7/586 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1702 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 7, p 586 |
author_variant |
g z gz s j sj k d kd q x qx z z zz l l ll |
---|---|
matchkey_str |
article:20751702:2022----::nlecaayiogoercroadopnainehdofuaimcii |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TJ |
publishDate |
2022 |
allfields |
10.3390/machines10070586 doi (DE-627)DOAJ040244636 (DE-599)DOAJ19597f3a30594bad832ee607a09b7f87 DE-627 ger DE-627 rakwb eng TJ1-1570 Guojuan Zhao verfasserin aut Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. geometric error error compensation homogeneous coordinate transformation matrix Newton iteration four-axis machining tools Mechanical engineering and machinery Shengcheng Jiang verfasserin aut Kai Dong verfasserin aut Quanwang Xu verfasserin aut Ziling Zhang verfasserin aut Lei Lu verfasserin aut In Machines MDPI AG, 2013 10(2022), 7, p 586 (DE-627)73728823X (DE-600)2704328-9 20751702 nnns volume:10 year:2022 number:7, p 586 https://doi.org/10.3390/machines10070586 kostenfrei https://doaj.org/article/19597f3a30594bad832ee607a09b7f87 kostenfrei https://www.mdpi.com/2075-1702/10/7/586 kostenfrei https://doaj.org/toc/2075-1702 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 7, p 586 |
spelling |
10.3390/machines10070586 doi (DE-627)DOAJ040244636 (DE-599)DOAJ19597f3a30594bad832ee607a09b7f87 DE-627 ger DE-627 rakwb eng TJ1-1570 Guojuan Zhao verfasserin aut Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. geometric error error compensation homogeneous coordinate transformation matrix Newton iteration four-axis machining tools Mechanical engineering and machinery Shengcheng Jiang verfasserin aut Kai Dong verfasserin aut Quanwang Xu verfasserin aut Ziling Zhang verfasserin aut Lei Lu verfasserin aut In Machines MDPI AG, 2013 10(2022), 7, p 586 (DE-627)73728823X (DE-600)2704328-9 20751702 nnns volume:10 year:2022 number:7, p 586 https://doi.org/10.3390/machines10070586 kostenfrei https://doaj.org/article/19597f3a30594bad832ee607a09b7f87 kostenfrei https://www.mdpi.com/2075-1702/10/7/586 kostenfrei https://doaj.org/toc/2075-1702 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 7, p 586 |
allfields_unstemmed |
10.3390/machines10070586 doi (DE-627)DOAJ040244636 (DE-599)DOAJ19597f3a30594bad832ee607a09b7f87 DE-627 ger DE-627 rakwb eng TJ1-1570 Guojuan Zhao verfasserin aut Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. geometric error error compensation homogeneous coordinate transformation matrix Newton iteration four-axis machining tools Mechanical engineering and machinery Shengcheng Jiang verfasserin aut Kai Dong verfasserin aut Quanwang Xu verfasserin aut Ziling Zhang verfasserin aut Lei Lu verfasserin aut In Machines MDPI AG, 2013 10(2022), 7, p 586 (DE-627)73728823X (DE-600)2704328-9 20751702 nnns volume:10 year:2022 number:7, p 586 https://doi.org/10.3390/machines10070586 kostenfrei https://doaj.org/article/19597f3a30594bad832ee607a09b7f87 kostenfrei https://www.mdpi.com/2075-1702/10/7/586 kostenfrei https://doaj.org/toc/2075-1702 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 7, p 586 |
allfieldsGer |
10.3390/machines10070586 doi (DE-627)DOAJ040244636 (DE-599)DOAJ19597f3a30594bad832ee607a09b7f87 DE-627 ger DE-627 rakwb eng TJ1-1570 Guojuan Zhao verfasserin aut Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. geometric error error compensation homogeneous coordinate transformation matrix Newton iteration four-axis machining tools Mechanical engineering and machinery Shengcheng Jiang verfasserin aut Kai Dong verfasserin aut Quanwang Xu verfasserin aut Ziling Zhang verfasserin aut Lei Lu verfasserin aut In Machines MDPI AG, 2013 10(2022), 7, p 586 (DE-627)73728823X (DE-600)2704328-9 20751702 nnns volume:10 year:2022 number:7, p 586 https://doi.org/10.3390/machines10070586 kostenfrei https://doaj.org/article/19597f3a30594bad832ee607a09b7f87 kostenfrei https://www.mdpi.com/2075-1702/10/7/586 kostenfrei https://doaj.org/toc/2075-1702 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 7, p 586 |
allfieldsSound |
10.3390/machines10070586 doi (DE-627)DOAJ040244636 (DE-599)DOAJ19597f3a30594bad832ee607a09b7f87 DE-627 ger DE-627 rakwb eng TJ1-1570 Guojuan Zhao verfasserin aut Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. geometric error error compensation homogeneous coordinate transformation matrix Newton iteration four-axis machining tools Mechanical engineering and machinery Shengcheng Jiang verfasserin aut Kai Dong verfasserin aut Quanwang Xu verfasserin aut Ziling Zhang verfasserin aut Lei Lu verfasserin aut In Machines MDPI AG, 2013 10(2022), 7, p 586 (DE-627)73728823X (DE-600)2704328-9 20751702 nnns volume:10 year:2022 number:7, p 586 https://doi.org/10.3390/machines10070586 kostenfrei https://doaj.org/article/19597f3a30594bad832ee607a09b7f87 kostenfrei https://www.mdpi.com/2075-1702/10/7/586 kostenfrei https://doaj.org/toc/2075-1702 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 7, p 586 |
language |
English |
source |
In Machines 10(2022), 7, p 586 volume:10 year:2022 number:7, p 586 |
sourceStr |
In Machines 10(2022), 7, p 586 volume:10 year:2022 number:7, p 586 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
geometric error error compensation homogeneous coordinate transformation matrix Newton iteration four-axis machining tools Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Machines |
authorswithroles_txt_mv |
Guojuan Zhao @@aut@@ Shengcheng Jiang @@aut@@ Kai Dong @@aut@@ Quanwang Xu @@aut@@ Ziling Zhang @@aut@@ Lei Lu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
73728823X |
id |
DOAJ040244636 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040244636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414084142.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/machines10070586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040244636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19597f3a30594bad832ee607a09b7f87</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guojuan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometric error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneous coordinate transformation matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newton iteration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-axis machining tools</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shengcheng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quanwang Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziling Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Machines</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 7, p 586</subfield><subfield code="w">(DE-627)73728823X</subfield><subfield code="w">(DE-600)2704328-9</subfield><subfield code="x">20751702</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 586</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/machines10070586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19597f3a30594bad832ee607a09b7f87</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1702/10/7/586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1702</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 586</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Guojuan Zhao |
spellingShingle |
Guojuan Zhao misc TJ1-1570 misc geometric error misc error compensation misc homogeneous coordinate transformation matrix misc Newton iteration misc four-axis machining tools misc Mechanical engineering and machinery Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes |
authorStr |
Guojuan Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)73728823X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
20751702 |
topic_title |
TJ1-1570 Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes geometric error error compensation homogeneous coordinate transformation matrix Newton iteration four-axis machining tools |
topic |
misc TJ1-1570 misc geometric error misc error compensation misc homogeneous coordinate transformation matrix misc Newton iteration misc four-axis machining tools misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc geometric error misc error compensation misc homogeneous coordinate transformation matrix misc Newton iteration misc four-axis machining tools misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc geometric error misc error compensation misc homogeneous coordinate transformation matrix misc Newton iteration misc four-axis machining tools misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Machines |
hierarchy_parent_id |
73728823X |
hierarchy_top_title |
Machines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)73728823X (DE-600)2704328-9 |
title |
Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes |
ctrlnum |
(DE-627)DOAJ040244636 (DE-599)DOAJ19597f3a30594bad832ee607a09b7f87 |
title_full |
Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes |
author_sort |
Guojuan Zhao |
journal |
Machines |
journalStr |
Machines |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Guojuan Zhao Shengcheng Jiang Kai Dong Quanwang Xu Ziling Zhang Lei Lu |
container_volume |
10 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Guojuan Zhao |
doi_str_mv |
10.3390/machines10070586 |
author2-role |
verfasserin |
title_sort |
influence analysis of geometric error and compensation method for four-axis machining tools with two rotary axes |
callnumber |
TJ1-1570 |
title_auth |
Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes |
abstract |
Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. |
abstractGer |
Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. |
abstract_unstemmed |
Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 586 |
title_short |
Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes |
url |
https://doi.org/10.3390/machines10070586 https://doaj.org/article/19597f3a30594bad832ee607a09b7f87 https://www.mdpi.com/2075-1702/10/7/586 https://doaj.org/toc/2075-1702 |
remote_bool |
true |
author2 |
Shengcheng Jiang Kai Dong Quanwang Xu Ziling Zhang Lei Lu |
author2Str |
Shengcheng Jiang Kai Dong Quanwang Xu Ziling Zhang Lei Lu |
ppnlink |
73728823X |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/machines10070586 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-03T13:47:15.318Z |
_version_ |
1803565856532201473 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040244636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414084142.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/machines10070586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040244636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19597f3a30594bad832ee607a09b7f87</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guojuan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence Analysis of Geometric Error and Compensation Method for Four-Axis Machining Tools with Two Rotary Axes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Four-axis machine tools with two rotary axes are widely used in the machining of complex parts. However, due to an irregular kinematic relationship and non-linear kinematic function with geometric error, it is difficult to analyze the influence the geometry error of each axis has and to compensate for such a geometry error. In this study, an influence analysis method of geometric error based on the homogeneous coordinate transformation matrix and a compensation method was developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous coordinate transformation matrix in the proposed method, and an error matrix is integrated into the kinematic model of the four-axis machine tool as a means of studying the influence the geometric error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool considering the geometric error, a comprehensive geometric error compensation calculation model based on the Newton iteration was then constructed for calculating the tool path as a means of compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path for an off-axis optical lens was chosen for verification of the proposed method. The results showed that the proposed method can significantly improve the machining accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometric error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneous coordinate transformation matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newton iteration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-axis machining tools</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shengcheng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quanwang Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziling Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Machines</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 7, p 586</subfield><subfield code="w">(DE-627)73728823X</subfield><subfield code="w">(DE-600)2704328-9</subfield><subfield code="x">20751702</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 586</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/machines10070586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19597f3a30594bad832ee607a09b7f87</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1702/10/7/586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1702</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 586</subfield></datafield></record></collection>
|
score |
7.4006968 |