Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach
To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology read...
Ausführliche Beschreibung
Autor*in: |
Nastasija Grujić [verfasserIn] Sanja Brdar [verfasserIn] Sjoukje Osinga [verfasserIn] Gert Jan Hofstede [verfasserIn] Ioannis N. Athanasiadis [verfasserIn] Miloš Pljakić [verfasserIn] Nikola Obrenović [verfasserIn] Miro Govedarica [verfasserIn] Vladimir Crnojević [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: ISPRS International Journal of Geo-Information - MDPI AG, 2012, 11(2022), 7, p 366 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:7, p 366 |
Links: |
---|
DOI / URN: |
10.3390/ijgi11070366 |
---|
Katalog-ID: |
DOAJ040278530 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ040278530 | ||
003 | DE-627 | ||
005 | 20240414113448.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijgi11070366 |2 doi | |
035 | |a (DE-627)DOAJ040278530 | ||
035 | |a (DE-599)DOAJ32f221bd0dc4489cba36206debe447a2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a G1-922 | |
100 | 0 | |a Nastasija Grujić |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. | ||
650 | 4 | |a ABM | |
650 | 4 | |a air quality | |
650 | 4 | |a big data | |
650 | 4 | |a big data GIS applications | |
650 | 4 | |a CDR | |
650 | 4 | |a telecom data | |
653 | 0 | |a Geography (General) | |
700 | 0 | |a Sanja Brdar |e verfasserin |4 aut | |
700 | 0 | |a Sjoukje Osinga |e verfasserin |4 aut | |
700 | 0 | |a Gert Jan Hofstede |e verfasserin |4 aut | |
700 | 0 | |a Ioannis N. Athanasiadis |e verfasserin |4 aut | |
700 | 0 | |a Miloš Pljakić |e verfasserin |4 aut | |
700 | 0 | |a Nikola Obrenović |e verfasserin |4 aut | |
700 | 0 | |a Miro Govedarica |e verfasserin |4 aut | |
700 | 0 | |a Vladimir Crnojević |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t ISPRS International Journal of Geo-Information |d MDPI AG, 2012 |g 11(2022), 7, p 366 |w (DE-627)689130961 |w (DE-600)2655790-3 |x 22209964 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:7, p 366 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijgi11070366 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/32f221bd0dc4489cba36206debe447a2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2220-9964/11/7/366 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2220-9964 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 7, p 366 |
author_variant |
n g ng s b sb s o so g j h gjh i n a ina m p mp n o no m g mg v c vc |
---|---|
matchkey_str |
article:22209964:2022----::obnntlcmaaiheeoeeudtsucsotafcneisoass |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
G |
publishDate |
2022 |
allfields |
10.3390/ijgi11070366 doi (DE-627)DOAJ040278530 (DE-599)DOAJ32f221bd0dc4489cba36206debe447a2 DE-627 ger DE-627 rakwb eng G1-922 Nastasija Grujić verfasserin aut Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. ABM air quality big data big data GIS applications CDR telecom data Geography (General) Sanja Brdar verfasserin aut Sjoukje Osinga verfasserin aut Gert Jan Hofstede verfasserin aut Ioannis N. Athanasiadis verfasserin aut Miloš Pljakić verfasserin aut Nikola Obrenović verfasserin aut Miro Govedarica verfasserin aut Vladimir Crnojević verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 11(2022), 7, p 366 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:11 year:2022 number:7, p 366 https://doi.org/10.3390/ijgi11070366 kostenfrei https://doaj.org/article/32f221bd0dc4489cba36206debe447a2 kostenfrei https://www.mdpi.com/2220-9964/11/7/366 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2022 7, p 366 |
spelling |
10.3390/ijgi11070366 doi (DE-627)DOAJ040278530 (DE-599)DOAJ32f221bd0dc4489cba36206debe447a2 DE-627 ger DE-627 rakwb eng G1-922 Nastasija Grujić verfasserin aut Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. ABM air quality big data big data GIS applications CDR telecom data Geography (General) Sanja Brdar verfasserin aut Sjoukje Osinga verfasserin aut Gert Jan Hofstede verfasserin aut Ioannis N. Athanasiadis verfasserin aut Miloš Pljakić verfasserin aut Nikola Obrenović verfasserin aut Miro Govedarica verfasserin aut Vladimir Crnojević verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 11(2022), 7, p 366 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:11 year:2022 number:7, p 366 https://doi.org/10.3390/ijgi11070366 kostenfrei https://doaj.org/article/32f221bd0dc4489cba36206debe447a2 kostenfrei https://www.mdpi.com/2220-9964/11/7/366 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2022 7, p 366 |
allfields_unstemmed |
10.3390/ijgi11070366 doi (DE-627)DOAJ040278530 (DE-599)DOAJ32f221bd0dc4489cba36206debe447a2 DE-627 ger DE-627 rakwb eng G1-922 Nastasija Grujić verfasserin aut Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. ABM air quality big data big data GIS applications CDR telecom data Geography (General) Sanja Brdar verfasserin aut Sjoukje Osinga verfasserin aut Gert Jan Hofstede verfasserin aut Ioannis N. Athanasiadis verfasserin aut Miloš Pljakić verfasserin aut Nikola Obrenović verfasserin aut Miro Govedarica verfasserin aut Vladimir Crnojević verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 11(2022), 7, p 366 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:11 year:2022 number:7, p 366 https://doi.org/10.3390/ijgi11070366 kostenfrei https://doaj.org/article/32f221bd0dc4489cba36206debe447a2 kostenfrei https://www.mdpi.com/2220-9964/11/7/366 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2022 7, p 366 |
allfieldsGer |
10.3390/ijgi11070366 doi (DE-627)DOAJ040278530 (DE-599)DOAJ32f221bd0dc4489cba36206debe447a2 DE-627 ger DE-627 rakwb eng G1-922 Nastasija Grujić verfasserin aut Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. ABM air quality big data big data GIS applications CDR telecom data Geography (General) Sanja Brdar verfasserin aut Sjoukje Osinga verfasserin aut Gert Jan Hofstede verfasserin aut Ioannis N. Athanasiadis verfasserin aut Miloš Pljakić verfasserin aut Nikola Obrenović verfasserin aut Miro Govedarica verfasserin aut Vladimir Crnojević verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 11(2022), 7, p 366 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:11 year:2022 number:7, p 366 https://doi.org/10.3390/ijgi11070366 kostenfrei https://doaj.org/article/32f221bd0dc4489cba36206debe447a2 kostenfrei https://www.mdpi.com/2220-9964/11/7/366 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2022 7, p 366 |
allfieldsSound |
10.3390/ijgi11070366 doi (DE-627)DOAJ040278530 (DE-599)DOAJ32f221bd0dc4489cba36206debe447a2 DE-627 ger DE-627 rakwb eng G1-922 Nastasija Grujić verfasserin aut Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. ABM air quality big data big data GIS applications CDR telecom data Geography (General) Sanja Brdar verfasserin aut Sjoukje Osinga verfasserin aut Gert Jan Hofstede verfasserin aut Ioannis N. Athanasiadis verfasserin aut Miloš Pljakić verfasserin aut Nikola Obrenović verfasserin aut Miro Govedarica verfasserin aut Vladimir Crnojević verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 11(2022), 7, p 366 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:11 year:2022 number:7, p 366 https://doi.org/10.3390/ijgi11070366 kostenfrei https://doaj.org/article/32f221bd0dc4489cba36206debe447a2 kostenfrei https://www.mdpi.com/2220-9964/11/7/366 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2022 7, p 366 |
language |
English |
source |
In ISPRS International Journal of Geo-Information 11(2022), 7, p 366 volume:11 year:2022 number:7, p 366 |
sourceStr |
In ISPRS International Journal of Geo-Information 11(2022), 7, p 366 volume:11 year:2022 number:7, p 366 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ABM air quality big data big data GIS applications CDR telecom data Geography (General) |
isfreeaccess_bool |
true |
container_title |
ISPRS International Journal of Geo-Information |
authorswithroles_txt_mv |
Nastasija Grujić @@aut@@ Sanja Brdar @@aut@@ Sjoukje Osinga @@aut@@ Gert Jan Hofstede @@aut@@ Ioannis N. Athanasiadis @@aut@@ Miloš Pljakić @@aut@@ Nikola Obrenović @@aut@@ Miro Govedarica @@aut@@ Vladimir Crnojević @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
689130961 |
id |
DOAJ040278530 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040278530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113448.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijgi11070366</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040278530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32f221bd0dc4489cba36206debe447a2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">G1-922</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nastasija Grujić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ABM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">big data GIS applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CDR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">telecom data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanja Brdar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sjoukje Osinga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gert Jan Hofstede</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis N. Athanasiadis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miloš Pljakić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikola Obrenović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miro Govedarica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Crnojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">ISPRS International Journal of Geo-Information</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2022), 7, p 366</subfield><subfield code="w">(DE-627)689130961</subfield><subfield code="w">(DE-600)2655790-3</subfield><subfield code="x">22209964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 366</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijgi11070366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32f221bd0dc4489cba36206debe447a2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2220-9964/11/7/366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2220-9964</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 366</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Nastasija Grujić |
spellingShingle |
Nastasija Grujić misc G1-922 misc ABM misc air quality misc big data misc big data GIS applications misc CDR misc telecom data misc Geography (General) Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach |
authorStr |
Nastasija Grujić |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689130961 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
G1-922 |
illustrated |
Not Illustrated |
issn |
22209964 |
topic_title |
G1-922 Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach ABM air quality big data big data GIS applications CDR telecom data |
topic |
misc G1-922 misc ABM misc air quality misc big data misc big data GIS applications misc CDR misc telecom data misc Geography (General) |
topic_unstemmed |
misc G1-922 misc ABM misc air quality misc big data misc big data GIS applications misc CDR misc telecom data misc Geography (General) |
topic_browse |
misc G1-922 misc ABM misc air quality misc big data misc big data GIS applications misc CDR misc telecom data misc Geography (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
ISPRS International Journal of Geo-Information |
hierarchy_parent_id |
689130961 |
hierarchy_top_title |
ISPRS International Journal of Geo-Information |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689130961 (DE-600)2655790-3 |
title |
Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach |
ctrlnum |
(DE-627)DOAJ040278530 (DE-599)DOAJ32f221bd0dc4489cba36206debe447a2 |
title_full |
Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach |
author_sort |
Nastasija Grujić |
journal |
ISPRS International Journal of Geo-Information |
journalStr |
ISPRS International Journal of Geo-Information |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Nastasija Grujić Sanja Brdar Sjoukje Osinga Gert Jan Hofstede Ioannis N. Athanasiadis Miloš Pljakić Nikola Obrenović Miro Govedarica Vladimir Crnojević |
container_volume |
11 |
class |
G1-922 |
format_se |
Elektronische Aufsätze |
author-letter |
Nastasija Grujić |
doi_str_mv |
10.3390/ijgi11070366 |
author2-role |
verfasserin |
title_sort |
combining telecom data with heterogeneous data sources for traffic and emission assessments—an agent-based approach |
callnumber |
G1-922 |
title_auth |
Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach |
abstract |
To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. |
abstractGer |
To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. |
abstract_unstemmed |
To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
7, p 366 |
title_short |
Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach |
url |
https://doi.org/10.3390/ijgi11070366 https://doaj.org/article/32f221bd0dc4489cba36206debe447a2 https://www.mdpi.com/2220-9964/11/7/366 https://doaj.org/toc/2220-9964 |
remote_bool |
true |
author2 |
Sanja Brdar Sjoukje Osinga Gert Jan Hofstede Ioannis N. Athanasiadis Miloš Pljakić Nikola Obrenović Miro Govedarica Vladimir Crnojević |
author2Str |
Sanja Brdar Sjoukje Osinga Gert Jan Hofstede Ioannis N. Athanasiadis Miloš Pljakić Nikola Obrenović Miro Govedarica Vladimir Crnojević |
ppnlink |
689130961 |
callnumber-subject |
G - General Geography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijgi11070366 |
callnumber-a |
G1-922 |
up_date |
2024-07-03T13:58:10.040Z |
_version_ |
1803566543075803136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040278530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113448.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijgi11070366</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040278530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32f221bd0dc4489cba36206debe447a2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">G1-922</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nastasija Grujić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To create quality decision-making tools that would contribute to transport sustainability, we need to build models relying on accurate, timely, and sufficiently disaggregated data. In spite of today’s ubiquity of big data, practical applications are still limited and have not reached technology readiness. Among them, passively generated telecom data are promising for studying travel-pattern generation. The objective of this study is twofold. First, to demonstrate how telecom data can be fused with other data sources and used to feed up a traffic model. Second, to simulate traffic using an agent-based approach and assess the emission produced by the model’s scenario. Taking Novi Sad as a case study, we simulated the traffic composition at 1-s resolution using the GAMA platform and calculated its emission at 1-h resolution. We used telecom data together with population and GIS data to calculate spatial-temporal movement and imported it to the ABM. Traffic flow was calibrated and validated with data from automatic vehicle counters, while air quality data was used to validate emissions. The results demonstrate the value of using diverse data sets for the creation of decision-making tools. We believe that this study is a positive endeavor toward combining big data and ABM in urban studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ABM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">big data GIS applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CDR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">telecom data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanja Brdar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sjoukje Osinga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gert Jan Hofstede</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ioannis N. Athanasiadis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miloš Pljakić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikola Obrenović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miro Govedarica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Crnojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">ISPRS International Journal of Geo-Information</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2022), 7, p 366</subfield><subfield code="w">(DE-627)689130961</subfield><subfield code="w">(DE-600)2655790-3</subfield><subfield code="x">22209964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 366</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijgi11070366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32f221bd0dc4489cba36206debe447a2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2220-9964/11/7/366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2220-9964</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 366</subfield></datafield></record></collection>
|
score |
7.4013557 |