Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy
Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle dur...
Ausführliche Beschreibung
Autor*in: |
Matthew B. Hudson [verfasserIn] Myra E. Woodworth-Hobbs [verfasserIn] Jennifer L. Gooch [verfasserIn] S. Russ Price [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Koreanisch |
Erschienen: |
2012 |
---|
Übergeordnetes Werk: |
In: Kidney Research and Clinical Practice - The Korean Society of Nephrology, 2018, 31(2012), 2, p A92 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2012 ; number:2, p A92 |
Links: |
---|
DOI / URN: |
10.1016/j.krcp.2012.04.625 |
---|
Katalog-ID: |
DOAJ04035735X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04035735X | ||
003 | DE-627 | ||
005 | 20230308035140.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.krcp.2012.04.625 |2 doi | |
035 | |a (DE-627)DOAJ04035735X | ||
035 | |a (DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a kor | ||
050 | 0 | |a RC31-1245 | |
050 | 0 | |a RC581-951 | |
100 | 0 | |a Matthew B. Hudson |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 | ||
653 | 0 | |a Internal medicine | |
653 | 0 | |a Specialties of internal medicine | |
700 | 0 | |a Myra E. Woodworth-Hobbs |e verfasserin |4 aut | |
700 | 0 | |a Jennifer L. Gooch |e verfasserin |4 aut | |
700 | 0 | |a S. Russ Price |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Kidney Research and Clinical Practice |d The Korean Society of Nephrology, 2018 |g 31(2012), 2, p A92 |w (DE-627)689392699 |w (DE-600)2656420-8 |x 22119140 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2012 |g number:2, p A92 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.krcp.2012.04.625 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2211913212006584 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2211-9132 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 31 |j 2012 |e 2, p A92 |
author_variant |
m b h mbh m e w h mewh j l g jlg s r p srp |
---|---|
matchkey_str |
article:22119140:2012----::acnuinasgaigeuaeargnadufvairra3mr |
hierarchy_sort_str |
2012 |
callnumber-subject-code |
RC |
publishDate |
2012 |
allfields |
10.1016/j.krcp.2012.04.625 doi (DE-627)DOAJ04035735X (DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd DE-627 ger DE-627 rakwb eng kor RC31-1245 RC581-951 Matthew B. Hudson verfasserin aut Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 Internal medicine Specialties of internal medicine Myra E. Woodworth-Hobbs verfasserin aut Jennifer L. Gooch verfasserin aut S. Russ Price verfasserin aut In Kidney Research and Clinical Practice The Korean Society of Nephrology, 2018 31(2012), 2, p A92 (DE-627)689392699 (DE-600)2656420-8 22119140 nnns volume:31 year:2012 number:2, p A92 https://doi.org/10.1016/j.krcp.2012.04.625 kostenfrei https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2211913212006584 kostenfrei https://doaj.org/toc/2211-9132 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2012 2, p A92 |
spelling |
10.1016/j.krcp.2012.04.625 doi (DE-627)DOAJ04035735X (DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd DE-627 ger DE-627 rakwb eng kor RC31-1245 RC581-951 Matthew B. Hudson verfasserin aut Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 Internal medicine Specialties of internal medicine Myra E. Woodworth-Hobbs verfasserin aut Jennifer L. Gooch verfasserin aut S. Russ Price verfasserin aut In Kidney Research and Clinical Practice The Korean Society of Nephrology, 2018 31(2012), 2, p A92 (DE-627)689392699 (DE-600)2656420-8 22119140 nnns volume:31 year:2012 number:2, p A92 https://doi.org/10.1016/j.krcp.2012.04.625 kostenfrei https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2211913212006584 kostenfrei https://doaj.org/toc/2211-9132 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2012 2, p A92 |
allfields_unstemmed |
10.1016/j.krcp.2012.04.625 doi (DE-627)DOAJ04035735X (DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd DE-627 ger DE-627 rakwb eng kor RC31-1245 RC581-951 Matthew B. Hudson verfasserin aut Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 Internal medicine Specialties of internal medicine Myra E. Woodworth-Hobbs verfasserin aut Jennifer L. Gooch verfasserin aut S. Russ Price verfasserin aut In Kidney Research and Clinical Practice The Korean Society of Nephrology, 2018 31(2012), 2, p A92 (DE-627)689392699 (DE-600)2656420-8 22119140 nnns volume:31 year:2012 number:2, p A92 https://doi.org/10.1016/j.krcp.2012.04.625 kostenfrei https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2211913212006584 kostenfrei https://doaj.org/toc/2211-9132 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2012 2, p A92 |
allfieldsGer |
10.1016/j.krcp.2012.04.625 doi (DE-627)DOAJ04035735X (DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd DE-627 ger DE-627 rakwb eng kor RC31-1245 RC581-951 Matthew B. Hudson verfasserin aut Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 Internal medicine Specialties of internal medicine Myra E. Woodworth-Hobbs verfasserin aut Jennifer L. Gooch verfasserin aut S. Russ Price verfasserin aut In Kidney Research and Clinical Practice The Korean Society of Nephrology, 2018 31(2012), 2, p A92 (DE-627)689392699 (DE-600)2656420-8 22119140 nnns volume:31 year:2012 number:2, p A92 https://doi.org/10.1016/j.krcp.2012.04.625 kostenfrei https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2211913212006584 kostenfrei https://doaj.org/toc/2211-9132 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2012 2, p A92 |
allfieldsSound |
10.1016/j.krcp.2012.04.625 doi (DE-627)DOAJ04035735X (DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd DE-627 ger DE-627 rakwb eng kor RC31-1245 RC581-951 Matthew B. Hudson verfasserin aut Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 Internal medicine Specialties of internal medicine Myra E. Woodworth-Hobbs verfasserin aut Jennifer L. Gooch verfasserin aut S. Russ Price verfasserin aut In Kidney Research and Clinical Practice The Korean Society of Nephrology, 2018 31(2012), 2, p A92 (DE-627)689392699 (DE-600)2656420-8 22119140 nnns volume:31 year:2012 number:2, p A92 https://doi.org/10.1016/j.krcp.2012.04.625 kostenfrei https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2211913212006584 kostenfrei https://doaj.org/toc/2211-9132 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2012 2, p A92 |
language |
English Korean |
source |
In Kidney Research and Clinical Practice 31(2012), 2, p A92 volume:31 year:2012 number:2, p A92 |
sourceStr |
In Kidney Research and Clinical Practice 31(2012), 2, p A92 volume:31 year:2012 number:2, p A92 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Internal medicine Specialties of internal medicine |
isfreeaccess_bool |
true |
container_title |
Kidney Research and Clinical Practice |
authorswithroles_txt_mv |
Matthew B. Hudson @@aut@@ Myra E. Woodworth-Hobbs @@aut@@ Jennifer L. Gooch @@aut@@ S. Russ Price @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
689392699 |
id |
DOAJ04035735X |
language_de |
englisch koreanisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04035735X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308035140.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.krcp.2012.04.625</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04035735X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">kor</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC31-1245</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-951</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Matthew B. Hudson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Internal medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Specialties of internal medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Myra E. Woodworth-Hobbs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer L. Gooch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Russ Price</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Kidney Research and Clinical Practice</subfield><subfield code="d">The Korean Society of Nephrology, 2018</subfield><subfield code="g">31(2012), 2, p A92</subfield><subfield code="w">(DE-627)689392699</subfield><subfield code="w">(DE-600)2656420-8</subfield><subfield code="x">22119140</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:2, p A92</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.krcp.2012.04.625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211913212006584</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-9132</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2012</subfield><subfield code="e">2, p A92</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Matthew B. Hudson |
spellingShingle |
Matthew B. Hudson misc RC31-1245 misc RC581-951 misc Internal medicine misc Specialties of internal medicine Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy |
authorStr |
Matthew B. Hudson |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689392699 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC31-1245 |
illustrated |
Not Illustrated |
issn |
22119140 |
topic_title |
RC31-1245 RC581-951 Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy |
topic |
misc RC31-1245 misc RC581-951 misc Internal medicine misc Specialties of internal medicine |
topic_unstemmed |
misc RC31-1245 misc RC581-951 misc Internal medicine misc Specialties of internal medicine |
topic_browse |
misc RC31-1245 misc RC581-951 misc Internal medicine misc Specialties of internal medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Kidney Research and Clinical Practice |
hierarchy_parent_id |
689392699 |
hierarchy_top_title |
Kidney Research and Clinical Practice |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689392699 (DE-600)2656420-8 |
title |
Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy |
ctrlnum |
(DE-627)DOAJ04035735X (DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd |
title_full |
Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy |
author_sort |
Matthew B. Hudson |
journal |
Kidney Research and Clinical Practice |
journalStr |
Kidney Research and Clinical Practice |
callnumber-first-code |
R |
lang_code |
eng kor |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
author_browse |
Matthew B. Hudson Myra E. Woodworth-Hobbs Jennifer L. Gooch S. Russ Price |
container_volume |
31 |
class |
RC31-1245 RC581-951 |
format_se |
Elektronische Aufsätze |
author-letter |
Matthew B. Hudson |
doi_str_mv |
10.1016/j.krcp.2012.04.625 |
author2-role |
verfasserin |
title_sort |
calcineurin-nfat signaling regulates atrogin-1 and murf1 via microrna-23a (mir-23a) during muscle atrophy |
callnumber |
RC31-1245 |
title_auth |
Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy |
abstract |
Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 |
abstractGer |
Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 |
abstract_unstemmed |
Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p A92 |
title_short |
Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy |
url |
https://doi.org/10.1016/j.krcp.2012.04.625 https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd http://www.sciencedirect.com/science/article/pii/S2211913212006584 https://doaj.org/toc/2211-9132 |
remote_bool |
true |
author2 |
Myra E. Woodworth-Hobbs Jennifer L. Gooch S. Russ Price |
author2Str |
Myra E. Woodworth-Hobbs Jennifer L. Gooch S. Russ Price |
ppnlink |
689392699 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.krcp.2012.04.625 |
callnumber-a |
RC31-1245 |
up_date |
2024-07-03T14:24:07.601Z |
_version_ |
1803568176276963328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04035735X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308035140.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.krcp.2012.04.625</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04035735X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa39ad03fb616440780d7c0ac76fe49cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">kor</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC31-1245</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC581-951</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Matthew B. Hudson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calcineurin-NFAT signaling regulates atrogin-1 and MuRF1 via microRNA-23a (miR-23a) during muscle atrophy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Muscle atrophy is prevalent in chronic kidney disease (CKD) patients. MicroRNAs play a critical role in biological processes including muscle atrophy. MicroRNA-23a (miR-23a) negatively regulates the expression of two atrophy-related ubiquitin ligases, atrogin-1 and MuRF1; it is reduced in muscle during atrophy. Although miR-23a expression was recently shown to be positively regulated by NFATc3, the underlying mechanism of miR-23a suppression during atrophy remains unknown. We previously reported that the activity of calcineurin (Cn), the calcium-activated phosphatase that regulates NFATc proteins, is decreased when insulin signaling is decreased. Since CKD causes muscle atrophy, and glucocorticoids are required for the response, we investigated how dexamethasone (DEX) affects Cn activity, NFATc3 signaling, and miR-23a expression. C2C12 or L6 myotubes were treated with 100 uM DEX to induce atrophy. Within 1 h, Cn activity was reduced and less NFATc3 was located in the nucleus. Further, miR-23a was also decreased within 30 minutes. After 48 h, expression of the NFATC3 target gene, MCIP1.4, and miR-23a were decreased. Expression of atrogin-1 and MuRF1 were also increased 48 h after DEX. Collectively, these findings indicate the Cn-NFAT signaling pathway may play an important role in the regulation of atrogin-1 and MuRF1 by suppressing miR23a during CKD and glucocorticoid-related muscle atrophy. Support: NIH DK007656; AHA GRNT7660020</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Internal medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Specialties of internal medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Myra E. Woodworth-Hobbs</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer L. Gooch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Russ Price</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Kidney Research and Clinical Practice</subfield><subfield code="d">The Korean Society of Nephrology, 2018</subfield><subfield code="g">31(2012), 2, p A92</subfield><subfield code="w">(DE-627)689392699</subfield><subfield code="w">(DE-600)2656420-8</subfield><subfield code="x">22119140</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:2, p A92</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.krcp.2012.04.625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a39ad03fb616440780d7c0ac76fe49cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211913212006584</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-9132</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2012</subfield><subfield code="e">2, p A92</subfield></datafield></record></collection>
|
score |
7.3990145 |