An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence
A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Mo...
Ausführliche Beschreibung
Autor*in: |
Lei Jia [verfasserIn] Yufan Xu [verfasserIn] John A. Sweeney [verfasserIn] Cheng Wang [verfasserIn] Billy Sung [verfasserIn] Jun Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Psychology - Frontiers Media S.A., 2010, 10(2019) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2019 |
Links: |
---|
DOI / URN: |
10.3389/fpsyg.2019.02117 |
---|
Katalog-ID: |
DOAJ040428141 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ040428141 | ||
003 | DE-627 | ||
005 | 20230308035508.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fpsyg.2019.02117 |2 doi | |
035 | |a (DE-627)DOAJ040428141 | ||
035 | |a (DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a BF1-990 | |
100 | 0 | |a Lei Jia |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. | ||
650 | 4 | |a extrastriate visual cortex | |
650 | 4 | |a human medial temporal complex (hMT+) | |
650 | 4 | |a implied motion (IM) | |
650 | 4 | |a coherence levels | |
650 | 4 | |a P2 | |
650 | 4 | |a event-related potential (ERP) | |
653 | 0 | |a Psychology | |
700 | 0 | |a Yufan Xu |e verfasserin |4 aut | |
700 | 0 | |a John A. Sweeney |e verfasserin |4 aut | |
700 | 0 | |a Cheng Wang |e verfasserin |4 aut | |
700 | 0 | |a Billy Sung |e verfasserin |4 aut | |
700 | 0 | |a Jun Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Psychology |d Frontiers Media S.A., 2010 |g 10(2019) |w (DE-627)631495711 |w (DE-600)2563826-9 |x 16641078 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.3389/fpsyg.2019.02117 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-1078 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2019 |
author_variant |
l j lj y x yx j a s jas c w cw b s bs j w jw |
---|---|
matchkey_str |
article:16641078:2019----::nvnrltdoetasuyfhnuarsostifremtoivs |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
BF |
publishDate |
2019 |
allfields |
10.3389/fpsyg.2019.02117 doi (DE-627)DOAJ040428141 (DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841 DE-627 ger DE-627 rakwb eng BF1-990 Lei Jia verfasserin aut An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. extrastriate visual cortex human medial temporal complex (hMT+) implied motion (IM) coherence levels P2 event-related potential (ERP) Psychology Yufan Xu verfasserin aut John A. Sweeney verfasserin aut Cheng Wang verfasserin aut Billy Sung verfasserin aut Jun Wang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 10(2019) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:10 year:2019 https://doi.org/10.3389/fpsyg.2019.02117 kostenfrei https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841 kostenfrei https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 |
spelling |
10.3389/fpsyg.2019.02117 doi (DE-627)DOAJ040428141 (DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841 DE-627 ger DE-627 rakwb eng BF1-990 Lei Jia verfasserin aut An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. extrastriate visual cortex human medial temporal complex (hMT+) implied motion (IM) coherence levels P2 event-related potential (ERP) Psychology Yufan Xu verfasserin aut John A. Sweeney verfasserin aut Cheng Wang verfasserin aut Billy Sung verfasserin aut Jun Wang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 10(2019) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:10 year:2019 https://doi.org/10.3389/fpsyg.2019.02117 kostenfrei https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841 kostenfrei https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 |
allfields_unstemmed |
10.3389/fpsyg.2019.02117 doi (DE-627)DOAJ040428141 (DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841 DE-627 ger DE-627 rakwb eng BF1-990 Lei Jia verfasserin aut An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. extrastriate visual cortex human medial temporal complex (hMT+) implied motion (IM) coherence levels P2 event-related potential (ERP) Psychology Yufan Xu verfasserin aut John A. Sweeney verfasserin aut Cheng Wang verfasserin aut Billy Sung verfasserin aut Jun Wang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 10(2019) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:10 year:2019 https://doi.org/10.3389/fpsyg.2019.02117 kostenfrei https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841 kostenfrei https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 |
allfieldsGer |
10.3389/fpsyg.2019.02117 doi (DE-627)DOAJ040428141 (DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841 DE-627 ger DE-627 rakwb eng BF1-990 Lei Jia verfasserin aut An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. extrastriate visual cortex human medial temporal complex (hMT+) implied motion (IM) coherence levels P2 event-related potential (ERP) Psychology Yufan Xu verfasserin aut John A. Sweeney verfasserin aut Cheng Wang verfasserin aut Billy Sung verfasserin aut Jun Wang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 10(2019) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:10 year:2019 https://doi.org/10.3389/fpsyg.2019.02117 kostenfrei https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841 kostenfrei https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 |
allfieldsSound |
10.3389/fpsyg.2019.02117 doi (DE-627)DOAJ040428141 (DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841 DE-627 ger DE-627 rakwb eng BF1-990 Lei Jia verfasserin aut An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. extrastriate visual cortex human medial temporal complex (hMT+) implied motion (IM) coherence levels P2 event-related potential (ERP) Psychology Yufan Xu verfasserin aut John A. Sweeney verfasserin aut Cheng Wang verfasserin aut Billy Sung verfasserin aut Jun Wang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 10(2019) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:10 year:2019 https://doi.org/10.3389/fpsyg.2019.02117 kostenfrei https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841 kostenfrei https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 |
language |
English |
source |
In Frontiers in Psychology 10(2019) volume:10 year:2019 |
sourceStr |
In Frontiers in Psychology 10(2019) volume:10 year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
extrastriate visual cortex human medial temporal complex (hMT+) implied motion (IM) coherence levels P2 event-related potential (ERP) Psychology |
isfreeaccess_bool |
true |
container_title |
Frontiers in Psychology |
authorswithroles_txt_mv |
Lei Jia @@aut@@ Yufan Xu @@aut@@ John A. Sweeney @@aut@@ Cheng Wang @@aut@@ Billy Sung @@aut@@ Jun Wang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
631495711 |
id |
DOAJ040428141 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040428141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308035508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpsyg.2019.02117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040428141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BF1-990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lei Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extrastriate visual cortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human medial temporal complex (hMT+)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implied motion (IM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coherence levels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">event-related potential (ERP)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Psychology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John A. Sweeney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Billy Sung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Psychology</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">10(2019)</subfield><subfield code="w">(DE-627)631495711</subfield><subfield code="w">(DE-600)2563826-9</subfield><subfield code="x">16641078</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpsyg.2019.02117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-1078</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
B - Philosophy, Psychology, Religion |
author |
Lei Jia |
spellingShingle |
Lei Jia misc BF1-990 misc extrastriate visual cortex misc human medial temporal complex (hMT+) misc implied motion (IM) misc coherence levels misc P2 misc event-related potential (ERP) misc Psychology An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence |
authorStr |
Lei Jia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)631495711 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
BF1-990 |
illustrated |
Not Illustrated |
issn |
16641078 |
topic_title |
BF1-990 An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence extrastriate visual cortex human medial temporal complex (hMT+) implied motion (IM) coherence levels P2 event-related potential (ERP) |
topic |
misc BF1-990 misc extrastriate visual cortex misc human medial temporal complex (hMT+) misc implied motion (IM) misc coherence levels misc P2 misc event-related potential (ERP) misc Psychology |
topic_unstemmed |
misc BF1-990 misc extrastriate visual cortex misc human medial temporal complex (hMT+) misc implied motion (IM) misc coherence levels misc P2 misc event-related potential (ERP) misc Psychology |
topic_browse |
misc BF1-990 misc extrastriate visual cortex misc human medial temporal complex (hMT+) misc implied motion (IM) misc coherence levels misc P2 misc event-related potential (ERP) misc Psychology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Psychology |
hierarchy_parent_id |
631495711 |
hierarchy_top_title |
Frontiers in Psychology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)631495711 (DE-600)2563826-9 |
title |
An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence |
ctrlnum |
(DE-627)DOAJ040428141 (DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841 |
title_full |
An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence |
author_sort |
Lei Jia |
journal |
Frontiers in Psychology |
journalStr |
Frontiers in Psychology |
callnumber-first-code |
B |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Lei Jia Yufan Xu John A. Sweeney Cheng Wang Billy Sung Jun Wang |
container_volume |
10 |
class |
BF1-990 |
format_se |
Elektronische Aufsätze |
author-letter |
Lei Jia |
doi_str_mv |
10.3389/fpsyg.2019.02117 |
author2-role |
verfasserin |
title_sort |
event-related potential study of the neural response to inferred motion in visual images of varying coherence |
callnumber |
BF1-990 |
title_auth |
An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence |
abstract |
A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. |
abstractGer |
A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. |
abstract_unstemmed |
A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence |
url |
https://doi.org/10.3389/fpsyg.2019.02117 https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841 https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full https://doaj.org/toc/1664-1078 |
remote_bool |
true |
author2 |
Yufan Xu John A. Sweeney Cheng Wang Billy Sung Jun Wang |
author2Str |
Yufan Xu John A. Sweeney Cheng Wang Billy Sung Jun Wang |
ppnlink |
631495711 |
callnumber-subject |
BF - Psychology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fpsyg.2019.02117 |
callnumber-a |
BF1-990 |
up_date |
2024-07-03T14:48:25.475Z |
_version_ |
1803569704968650752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040428141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308035508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpsyg.2019.02117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040428141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2cc3943d906f45c597d65e7dbfb6f841</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BF1-990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lei Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Event-Related Potential Study of the Neural Response to Inferred Motion in Visual Images of Varying Coherence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A vivid sense of motion can be inferred from static pictures of objects in motion. Like perception of real motion (RM), viewing photographs with implied motion (IM) can also activate the motion-sensitive visual cortex, including the middle temporal complex (hMT+) of the human extrastriate cortex. Moreover, extrastriate cortical activity also increases with motion coherence. Based on these previous findings, this study examined whether similar coherence level-dependent activity in motion-sensitive human extrastriate cortex is seen with IM stimuli of varying coherence. Photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented to 15 participants. The coherence of the stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Electroencephalographic data were collected while participants viewed IM or counterpart non-IM stimuli. The P2 response of extrastriate visual cortex (source located at hMT+) increased bilaterally with coherence level in the IM conditions but not in the non-IM conditions. This finding demonstrates that extrastriate visual cortical responses are progressively activated as motion coherence increases, even when motion is inferred, providing new support for the view that the activity of human motion-sensitive extrastriate visual cortex can be modulated by top-down perceptual influences in addition to its well-established role in processing bottom-up sensory signals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extrastriate visual cortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human medial temporal complex (hMT+)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implied motion (IM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coherence levels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">event-related potential (ERP)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Psychology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John A. Sweeney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Billy Sung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Psychology</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">10(2019)</subfield><subfield code="w">(DE-627)631495711</subfield><subfield code="w">(DE-600)2563826-9</subfield><subfield code="x">16641078</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpsyg.2019.02117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2cc3943d906f45c597d65e7dbfb6f841</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fpsyg.2019.02117/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-1078</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.402958 |