Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties
Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by he...
Ausführliche Beschreibung
Autor*in: |
Sven Sängerlaub [verfasserIn] Esra Kucukpinar [verfasserIn] Kajetan Müller [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials - MDPI AG, 2009, 12(2019), 14, p 2304 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2019 ; number:14, p 2304 |
Links: |
---|
DOI / URN: |
10.3390/ma12142304 |
---|
Katalog-ID: |
DOAJ040592278 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ040592278 | ||
003 | DE-627 | ||
005 | 20230308040412.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ma12142304 |2 doi | |
035 | |a (DE-627)DOAJ040592278 | ||
035 | |a (DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH201-278.5 | |
050 | 0 | |a QC120-168.85 | |
100 | 0 | |a Sven Sängerlaub |e verfasserin |4 aut | |
245 | 1 | 0 | |a Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). | ||
650 | 4 | |a active packaging | |
650 | 4 | |a moisture control | |
650 | 4 | |a water vapor absorption | |
650 | 4 | |a effective diffusion coefficient, mixed matrix membranes | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Microscopy | |
653 | 0 | |a Descriptive and experimental mechanics | |
700 | 0 | |a Esra Kucukpinar |e verfasserin |4 aut | |
700 | 0 | |a Kajetan Müller |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials |d MDPI AG, 2009 |g 12(2019), 14, p 2304 |w (DE-627)595712649 |w (DE-600)2487261-1 |x 19961944 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2019 |g number:14, p 2304 |
856 | 4 | 0 | |u https://doi.org/10.3390/ma12142304 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1944/12/14/2304 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1944 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2019 |e 14, p 2304 |
author_variant |
s s ss e k ek k m km |
---|---|
matchkey_str |
article:19961944:2019----::eicnflsaefodniyoytyeeihipreslcglaevprbopinemaiiysbsbnu2uo |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.3390/ma12142304 doi (DE-627)DOAJ040592278 (DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Sven Sängerlaub verfasserin aut Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). active packaging moisture control water vapor absorption effective diffusion coefficient, mixed matrix membranes Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Esra Kucukpinar verfasserin aut Kajetan Müller verfasserin aut In Materials MDPI AG, 2009 12(2019), 14, p 2304 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:12 year:2019 number:14, p 2304 https://doi.org/10.3390/ma12142304 kostenfrei https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1 kostenfrei https://www.mdpi.com/1996-1944/12/14/2304 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 14, p 2304 |
spelling |
10.3390/ma12142304 doi (DE-627)DOAJ040592278 (DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Sven Sängerlaub verfasserin aut Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). active packaging moisture control water vapor absorption effective diffusion coefficient, mixed matrix membranes Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Esra Kucukpinar verfasserin aut Kajetan Müller verfasserin aut In Materials MDPI AG, 2009 12(2019), 14, p 2304 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:12 year:2019 number:14, p 2304 https://doi.org/10.3390/ma12142304 kostenfrei https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1 kostenfrei https://www.mdpi.com/1996-1944/12/14/2304 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 14, p 2304 |
allfields_unstemmed |
10.3390/ma12142304 doi (DE-627)DOAJ040592278 (DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Sven Sängerlaub verfasserin aut Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). active packaging moisture control water vapor absorption effective diffusion coefficient, mixed matrix membranes Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Esra Kucukpinar verfasserin aut Kajetan Müller verfasserin aut In Materials MDPI AG, 2009 12(2019), 14, p 2304 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:12 year:2019 number:14, p 2304 https://doi.org/10.3390/ma12142304 kostenfrei https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1 kostenfrei https://www.mdpi.com/1996-1944/12/14/2304 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 14, p 2304 |
allfieldsGer |
10.3390/ma12142304 doi (DE-627)DOAJ040592278 (DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Sven Sängerlaub verfasserin aut Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). active packaging moisture control water vapor absorption effective diffusion coefficient, mixed matrix membranes Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Esra Kucukpinar verfasserin aut Kajetan Müller verfasserin aut In Materials MDPI AG, 2009 12(2019), 14, p 2304 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:12 year:2019 number:14, p 2304 https://doi.org/10.3390/ma12142304 kostenfrei https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1 kostenfrei https://www.mdpi.com/1996-1944/12/14/2304 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 14, p 2304 |
allfieldsSound |
10.3390/ma12142304 doi (DE-627)DOAJ040592278 (DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Sven Sängerlaub verfasserin aut Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). active packaging moisture control water vapor absorption effective diffusion coefficient, mixed matrix membranes Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Esra Kucukpinar verfasserin aut Kajetan Müller verfasserin aut In Materials MDPI AG, 2009 12(2019), 14, p 2304 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:12 year:2019 number:14, p 2304 https://doi.org/10.3390/ma12142304 kostenfrei https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1 kostenfrei https://www.mdpi.com/1996-1944/12/14/2304 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2019 14, p 2304 |
language |
English |
source |
In Materials 12(2019), 14, p 2304 volume:12 year:2019 number:14, p 2304 |
sourceStr |
In Materials 12(2019), 14, p 2304 volume:12 year:2019 number:14, p 2304 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
active packaging moisture control water vapor absorption effective diffusion coefficient, mixed matrix membranes Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics |
isfreeaccess_bool |
true |
container_title |
Materials |
authorswithroles_txt_mv |
Sven Sängerlaub @@aut@@ Esra Kucukpinar @@aut@@ Kajetan Müller @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
595712649 |
id |
DOAJ040592278 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040592278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308040412.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma12142304</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040592278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sven Sängerlaub</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active packaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moisture control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water vapor absorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective diffusion coefficient, mixed matrix membranes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Esra Kucukpinar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kajetan Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2019), 14, p 2304</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:14, p 2304</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma12142304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/12/14/2304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">14, p 2304</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sven Sängerlaub |
spellingShingle |
Sven Sängerlaub misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc active packaging misc moisture control misc water vapor absorption misc effective diffusion coefficient, mixed matrix membranes misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties |
authorStr |
Sven Sängerlaub |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)595712649 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
19961944 |
topic_title |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties active packaging moisture control water vapor absorption effective diffusion coefficient, mixed matrix membranes |
topic |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc active packaging misc moisture control misc water vapor absorption misc effective diffusion coefficient, mixed matrix membranes misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_unstemmed |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc active packaging misc moisture control misc water vapor absorption misc effective diffusion coefficient, mixed matrix membranes misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_browse |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc active packaging misc moisture control misc water vapor absorption misc effective diffusion coefficient, mixed matrix membranes misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials |
hierarchy_parent_id |
595712649 |
hierarchy_top_title |
Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)595712649 (DE-600)2487261-1 |
title |
Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties |
ctrlnum |
(DE-627)DOAJ040592278 (DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1 |
title_full |
Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties |
author_sort |
Sven Sängerlaub |
journal |
Materials |
journalStr |
Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Sven Sängerlaub Esra Kucukpinar Kajetan Müller |
container_volume |
12 |
class |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 |
format_se |
Elektronische Aufsätze |
author-letter |
Sven Sängerlaub |
doi_str_mv |
10.3390/ma12142304 |
author2-role |
verfasserin |
title_sort |
desiccant films made of low-density polyethylene with dispersed silica gel—water vapor absorption, permeability (h<sub<2</sub<o, n<sub<2</sub<, o<sub<2</sub<, co<sub<2</sub<), and mechanical properties |
callnumber |
TK1-9971 |
title_auth |
Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties |
abstract |
Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). |
abstractGer |
Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). |
abstract_unstemmed |
Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 2304 |
title_short |
Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties |
url |
https://doi.org/10.3390/ma12142304 https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1 https://www.mdpi.com/1996-1944/12/14/2304 https://doaj.org/toc/1996-1944 |
remote_bool |
true |
author2 |
Esra Kucukpinar Kajetan Müller |
author2Str |
Esra Kucukpinar Kajetan Müller |
ppnlink |
595712649 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ma12142304 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T15:41:29.898Z |
_version_ |
1803573044078182401 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ040592278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308040412.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma12142304</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ040592278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ02d16a95ccde4b9da1af3390f004d9b1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sven Sängerlaub</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Desiccant Films Made of Low-Density Polyethylene with Dispersed Silica Gel—Water Vapor Absorption, Permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and Mechanical Properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H<sub<2</sub<O, N<sub<2</sub<, O<sub<2</sub<, CO<sub<2</sub<), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10<sup<−12</sup< mg·cm·(cm<sup<2</sup<·s·Pa)<sup<−1</sup<, 23 °C) higher than for pure PE-LD films (4.3·10<sup<−12</sup< mg·cm·(cm²·s·Pa)<sup<−1</sup<, 23 °C). On the other hand, the steady state gas permeabilities for N<sub<2</sub<, O<sub<2</sub<, and CO<sub<2</sub< were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (<inline-formula< <math display="inline"< <semantics< <mrow< <msub< <mi mathvariant="normal"<P</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<≈</mo< <msub< <mi mathvariant="normal"<S</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< <mo<·</mo< <msub< <mi mathvariant="normal"<D</mi< <mrow< <mi<eff</mi< <mo<.</mo< </mrow< </msub< </mrow< </semantics< </math< </inline-formula<). The tensile stress changed only slightly (values between 10 and 14 N mm<sup<−2</sup<), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active packaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moisture control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water vapor absorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective diffusion coefficient, mixed matrix membranes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Esra Kucukpinar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kajetan Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2019), 14, p 2304</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:14, p 2304</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma12142304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/02d16a95ccde4b9da1af3390f004d9b1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/12/14/2304</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">14, p 2304</subfield></datafield></record></collection>
|
score |
7.40219 |