Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation
<strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and second...
Ausführliche Beschreibung
Autor*in: |
Nasim Alsadat Mousavi [verfasserIn] Alireza Karimian [verfasserIn] mohammadhassan alamatsaz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Iranian Journal of Medical Physics - Mashhad University of Medical Sciences, 2016, 16(2019), 5, Seite 341-348 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2019 ; number:5 ; pages:341-348 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.22038/ijmp.2019.32424.1386 |
---|
Katalog-ID: |
DOAJ041305760 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ041305760 | ||
003 | DE-627 | ||
005 | 20230308045243.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.22038/ijmp.2019.32424.1386 |2 doi | |
035 | |a (DE-627)DOAJ041305760 | ||
035 | |a (DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R895-920 | |
100 | 0 | |a Nasim Alsadat Mousavi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. | ||
650 | 4 | |a brain tumor | |
650 | 4 | |a Monte Carlo Method | |
650 | 4 | |a Proton Therapy | |
653 | 0 | |a Medical physics. Medical radiology. Nuclear medicine | |
700 | 0 | |a Alireza Karimian |e verfasserin |4 aut | |
700 | 0 | |a mohammadhassan alamatsaz |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Iranian Journal of Medical Physics |d Mashhad University of Medical Sciences, 2016 |g 16(2019), 5, Seite 341-348 |w (DE-627)738408816 |w (DE-600)2706917-5 |x 23453672 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2019 |g number:5 |g pages:341-348 |
856 | 4 | 0 | |u https://doi.org/10.22038/ijmp.2019.32424.1386 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c |z kostenfrei |
856 | 4 | 0 | |u http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2345-3672 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2345-3672 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4305 | ||
951 | |a AR | ||
952 | |d 16 |j 2019 |e 5 |h 341-348 |
author_variant |
n a m nam a k ak m a ma |
---|---|
matchkey_str |
article:23453672:2019----::acltooteqiaetoefhfrtnteotmotnscnayatceibanr |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
R |
publishDate |
2019 |
allfields |
10.22038/ijmp.2019.32424.1386 doi (DE-627)DOAJ041305760 (DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c DE-627 ger DE-627 rakwb eng R895-920 Nasim Alsadat Mousavi verfasserin aut Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. brain tumor Monte Carlo Method Proton Therapy Medical physics. Medical radiology. Nuclear medicine Alireza Karimian verfasserin aut mohammadhassan alamatsaz verfasserin aut In Iranian Journal of Medical Physics Mashhad University of Medical Sciences, 2016 16(2019), 5, Seite 341-348 (DE-627)738408816 (DE-600)2706917-5 23453672 nnns volume:16 year:2019 number:5 pages:341-348 https://doi.org/10.22038/ijmp.2019.32424.1386 kostenfrei https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c kostenfrei http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 16 2019 5 341-348 |
spelling |
10.22038/ijmp.2019.32424.1386 doi (DE-627)DOAJ041305760 (DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c DE-627 ger DE-627 rakwb eng R895-920 Nasim Alsadat Mousavi verfasserin aut Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. brain tumor Monte Carlo Method Proton Therapy Medical physics. Medical radiology. Nuclear medicine Alireza Karimian verfasserin aut mohammadhassan alamatsaz verfasserin aut In Iranian Journal of Medical Physics Mashhad University of Medical Sciences, 2016 16(2019), 5, Seite 341-348 (DE-627)738408816 (DE-600)2706917-5 23453672 nnns volume:16 year:2019 number:5 pages:341-348 https://doi.org/10.22038/ijmp.2019.32424.1386 kostenfrei https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c kostenfrei http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 16 2019 5 341-348 |
allfields_unstemmed |
10.22038/ijmp.2019.32424.1386 doi (DE-627)DOAJ041305760 (DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c DE-627 ger DE-627 rakwb eng R895-920 Nasim Alsadat Mousavi verfasserin aut Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. brain tumor Monte Carlo Method Proton Therapy Medical physics. Medical radiology. Nuclear medicine Alireza Karimian verfasserin aut mohammadhassan alamatsaz verfasserin aut In Iranian Journal of Medical Physics Mashhad University of Medical Sciences, 2016 16(2019), 5, Seite 341-348 (DE-627)738408816 (DE-600)2706917-5 23453672 nnns volume:16 year:2019 number:5 pages:341-348 https://doi.org/10.22038/ijmp.2019.32424.1386 kostenfrei https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c kostenfrei http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 16 2019 5 341-348 |
allfieldsGer |
10.22038/ijmp.2019.32424.1386 doi (DE-627)DOAJ041305760 (DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c DE-627 ger DE-627 rakwb eng R895-920 Nasim Alsadat Mousavi verfasserin aut Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. brain tumor Monte Carlo Method Proton Therapy Medical physics. Medical radiology. Nuclear medicine Alireza Karimian verfasserin aut mohammadhassan alamatsaz verfasserin aut In Iranian Journal of Medical Physics Mashhad University of Medical Sciences, 2016 16(2019), 5, Seite 341-348 (DE-627)738408816 (DE-600)2706917-5 23453672 nnns volume:16 year:2019 number:5 pages:341-348 https://doi.org/10.22038/ijmp.2019.32424.1386 kostenfrei https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c kostenfrei http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 16 2019 5 341-348 |
allfieldsSound |
10.22038/ijmp.2019.32424.1386 doi (DE-627)DOAJ041305760 (DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c DE-627 ger DE-627 rakwb eng R895-920 Nasim Alsadat Mousavi verfasserin aut Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. brain tumor Monte Carlo Method Proton Therapy Medical physics. Medical radiology. Nuclear medicine Alireza Karimian verfasserin aut mohammadhassan alamatsaz verfasserin aut In Iranian Journal of Medical Physics Mashhad University of Medical Sciences, 2016 16(2019), 5, Seite 341-348 (DE-627)738408816 (DE-600)2706917-5 23453672 nnns volume:16 year:2019 number:5 pages:341-348 https://doi.org/10.22038/ijmp.2019.32424.1386 kostenfrei https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c kostenfrei http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei https://doaj.org/toc/2345-3672 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 16 2019 5 341-348 |
language |
English |
source |
In Iranian Journal of Medical Physics 16(2019), 5, Seite 341-348 volume:16 year:2019 number:5 pages:341-348 |
sourceStr |
In Iranian Journal of Medical Physics 16(2019), 5, Seite 341-348 volume:16 year:2019 number:5 pages:341-348 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
brain tumor Monte Carlo Method Proton Therapy Medical physics. Medical radiology. Nuclear medicine |
isfreeaccess_bool |
true |
container_title |
Iranian Journal of Medical Physics |
authorswithroles_txt_mv |
Nasim Alsadat Mousavi @@aut@@ Alireza Karimian @@aut@@ mohammadhassan alamatsaz @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
738408816 |
id |
DOAJ041305760 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041305760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308045243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22038/ijmp.2019.32424.1386</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041305760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R895-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nasim Alsadat Mousavi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brain tumor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton Therapy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical physics. Medical radiology. Nuclear medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Karimian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">mohammadhassan alamatsaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Iranian Journal of Medical Physics</subfield><subfield code="d">Mashhad University of Medical Sciences, 2016</subfield><subfield code="g">16(2019), 5, Seite 341-348</subfield><subfield code="w">(DE-627)738408816</subfield><subfield code="w">(DE-600)2706917-5</subfield><subfield code="x">23453672</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:341-348</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22038/ijmp.2019.32424.1386</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2345-3672</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2345-3672</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2019</subfield><subfield code="e">5</subfield><subfield code="h">341-348</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Nasim Alsadat Mousavi |
spellingShingle |
Nasim Alsadat Mousavi misc R895-920 misc brain tumor misc Monte Carlo Method misc Proton Therapy misc Medical physics. Medical radiology. Nuclear medicine Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation |
authorStr |
Nasim Alsadat Mousavi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)738408816 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R895-920 |
illustrated |
Not Illustrated |
issn |
23453672 |
topic_title |
R895-920 Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation brain tumor Monte Carlo Method Proton Therapy |
topic |
misc R895-920 misc brain tumor misc Monte Carlo Method misc Proton Therapy misc Medical physics. Medical radiology. Nuclear medicine |
topic_unstemmed |
misc R895-920 misc brain tumor misc Monte Carlo Method misc Proton Therapy misc Medical physics. Medical radiology. Nuclear medicine |
topic_browse |
misc R895-920 misc brain tumor misc Monte Carlo Method misc Proton Therapy misc Medical physics. Medical radiology. Nuclear medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Iranian Journal of Medical Physics |
hierarchy_parent_id |
738408816 |
hierarchy_top_title |
Iranian Journal of Medical Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)738408816 (DE-600)2706917-5 |
title |
Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation |
ctrlnum |
(DE-627)DOAJ041305760 (DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c |
title_full |
Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation |
author_sort |
Nasim Alsadat Mousavi |
journal |
Iranian Journal of Medical Physics |
journalStr |
Iranian Journal of Medical Physics |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
341 |
author_browse |
Nasim Alsadat Mousavi Alireza Karimian mohammadhassan alamatsaz |
container_volume |
16 |
class |
R895-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Nasim Alsadat Mousavi |
doi_str_mv |
10.22038/ijmp.2019.32424.1386 |
author2-role |
verfasserin |
title_sort |
calculation of the equivalent dose of the first and the most important secondary particles in brain proton therapy by monte carlo simulation |
callnumber |
R895-920 |
title_auth |
Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation |
abstract |
<strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. |
abstractGer |
<strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. |
abstract_unstemmed |
<strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 |
container_issue |
5 |
title_short |
Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation |
url |
https://doi.org/10.22038/ijmp.2019.32424.1386 https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf https://doaj.org/toc/2345-3672 |
remote_bool |
true |
author2 |
Alireza Karimian mohammadhassan alamatsaz |
author2Str |
Alireza Karimian mohammadhassan alamatsaz |
ppnlink |
738408816 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.22038/ijmp.2019.32424.1386 |
callnumber-a |
R895-920 |
up_date |
2024-07-03T19:32:42.044Z |
_version_ |
1803587590077546496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041305760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308045243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22038/ijmp.2019.32424.1386</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041305760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ05f18b6868fd46e3ab4239a057e73a1c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R895-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nasim Alsadat Mousavi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><strong<<em<Introduction:</em<</strong< Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. <strong<<em<Material and Methods:</em<</strong< In this study, a beam of protons was utilized with the energies of 160 and 190 MeV, which are more popular for brain tumor treatment. This beam irradiated the brain phantom after passing through proton therapy nozzle components. This phantom has a tumor with a radius of 3 cm in its centre. The most important parts of the nozzle include magnetic wobbler, scatterer, ridge filter, and collimator. <strong<<em<Results:</em<</strong< The results show that while using protons with the energy values of 190 and 160 MeV, the equivalent dose fractions in tumor, brain, skull, and skin to the total equivalent dose in the head are 61.8 (62.4%), 10.4(10.9%), 6.07(3.69%), and 21.7(23%), respectively, regarding the primary and secondary particles. <strong<<em<Conclusion: </em<</strong<According to the obtained results, in spite of the fact that most of the equivalent dose was inside the tumor volume, the skin of head has received the noticeable dose during proton therapy of brain which needs more concern.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brain tumor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton Therapy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical physics. Medical radiology. Nuclear medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Karimian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">mohammadhassan alamatsaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Iranian Journal of Medical Physics</subfield><subfield code="d">Mashhad University of Medical Sciences, 2016</subfield><subfield code="g">16(2019), 5, Seite 341-348</subfield><subfield code="w">(DE-627)738408816</subfield><subfield code="w">(DE-600)2706917-5</subfield><subfield code="x">23453672</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:341-348</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22038/ijmp.2019.32424.1386</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/05f18b6868fd46e3ab4239a057e73a1c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ijmp.mums.ac.ir/article_12164_0b125078d4a09eaa4810289c5f3ec175.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2345-3672</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2345-3672</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2019</subfield><subfield code="e">5</subfield><subfield code="h">341-348</subfield></datafield></record></collection>
|
score |
7.401636 |