Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode
To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize...
Ausführliche Beschreibung
Autor*in: |
Lei Zhang [verfasserIn] Lei Ren [verfasserIn] Shugen Bai [verfasserIn] Shun Sang [verfasserIn] Jiejie Huang [verfasserIn] Xinsong Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 57718-57735 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:57718-57735 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3179403 |
---|
Katalog-ID: |
DOAJ041686594 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ041686594 | ||
003 | DE-627 | ||
005 | 20230308051846.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3179403 |2 doi | |
035 | |a (DE-627)DOAJ041686594 | ||
035 | |a (DE-599)DOAJa8905be66fea4f77930e2186b878a2c2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Lei Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. | ||
650 | 4 | |a SiC MOSFET boost circuit | |
650 | 4 | |a synchronous working mode | |
650 | 4 | |a self-adaption dead-time | |
650 | 4 | |a continuous mode | |
650 | 4 | |a discontinuous mode | |
650 | 4 | |a loss | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lei Ren |e verfasserin |4 aut | |
700 | 0 | |a Shugen Bai |e verfasserin |4 aut | |
700 | 0 | |a Shun Sang |e verfasserin |4 aut | |
700 | 0 | |a Jiejie Huang |e verfasserin |4 aut | |
700 | 0 | |a Xinsong Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 57718-57735 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:57718-57735 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3179403 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9785788/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 57718-57735 |
author_variant |
l z lz l r lr s b sb s s ss j h jh x z xz |
---|---|
matchkey_str |
article:21693536:2022----::efdpinedieetnfrhscoftoscrutnhs |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3179403 doi (DE-627)DOAJ041686594 (DE-599)DOAJa8905be66fea4f77930e2186b878a2c2 DE-627 ger DE-627 rakwb eng TK1-9971 Lei Zhang verfasserin aut Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. SiC MOSFET boost circuit synchronous working mode self-adaption dead-time continuous mode discontinuous mode loss Electrical engineering. Electronics. Nuclear engineering Lei Ren verfasserin aut Shugen Bai verfasserin aut Shun Sang verfasserin aut Jiejie Huang verfasserin aut Xinsong Zhang verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 57718-57735 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:57718-57735 https://doi.org/10.1109/ACCESS.2022.3179403 kostenfrei https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2 kostenfrei https://ieeexplore.ieee.org/document/9785788/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 57718-57735 |
spelling |
10.1109/ACCESS.2022.3179403 doi (DE-627)DOAJ041686594 (DE-599)DOAJa8905be66fea4f77930e2186b878a2c2 DE-627 ger DE-627 rakwb eng TK1-9971 Lei Zhang verfasserin aut Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. SiC MOSFET boost circuit synchronous working mode self-adaption dead-time continuous mode discontinuous mode loss Electrical engineering. Electronics. Nuclear engineering Lei Ren verfasserin aut Shugen Bai verfasserin aut Shun Sang verfasserin aut Jiejie Huang verfasserin aut Xinsong Zhang verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 57718-57735 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:57718-57735 https://doi.org/10.1109/ACCESS.2022.3179403 kostenfrei https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2 kostenfrei https://ieeexplore.ieee.org/document/9785788/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 57718-57735 |
allfields_unstemmed |
10.1109/ACCESS.2022.3179403 doi (DE-627)DOAJ041686594 (DE-599)DOAJa8905be66fea4f77930e2186b878a2c2 DE-627 ger DE-627 rakwb eng TK1-9971 Lei Zhang verfasserin aut Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. SiC MOSFET boost circuit synchronous working mode self-adaption dead-time continuous mode discontinuous mode loss Electrical engineering. Electronics. Nuclear engineering Lei Ren verfasserin aut Shugen Bai verfasserin aut Shun Sang verfasserin aut Jiejie Huang verfasserin aut Xinsong Zhang verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 57718-57735 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:57718-57735 https://doi.org/10.1109/ACCESS.2022.3179403 kostenfrei https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2 kostenfrei https://ieeexplore.ieee.org/document/9785788/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 57718-57735 |
allfieldsGer |
10.1109/ACCESS.2022.3179403 doi (DE-627)DOAJ041686594 (DE-599)DOAJa8905be66fea4f77930e2186b878a2c2 DE-627 ger DE-627 rakwb eng TK1-9971 Lei Zhang verfasserin aut Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. SiC MOSFET boost circuit synchronous working mode self-adaption dead-time continuous mode discontinuous mode loss Electrical engineering. Electronics. Nuclear engineering Lei Ren verfasserin aut Shugen Bai verfasserin aut Shun Sang verfasserin aut Jiejie Huang verfasserin aut Xinsong Zhang verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 57718-57735 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:57718-57735 https://doi.org/10.1109/ACCESS.2022.3179403 kostenfrei https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2 kostenfrei https://ieeexplore.ieee.org/document/9785788/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 57718-57735 |
allfieldsSound |
10.1109/ACCESS.2022.3179403 doi (DE-627)DOAJ041686594 (DE-599)DOAJa8905be66fea4f77930e2186b878a2c2 DE-627 ger DE-627 rakwb eng TK1-9971 Lei Zhang verfasserin aut Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. SiC MOSFET boost circuit synchronous working mode self-adaption dead-time continuous mode discontinuous mode loss Electrical engineering. Electronics. Nuclear engineering Lei Ren verfasserin aut Shugen Bai verfasserin aut Shun Sang verfasserin aut Jiejie Huang verfasserin aut Xinsong Zhang verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 57718-57735 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:57718-57735 https://doi.org/10.1109/ACCESS.2022.3179403 kostenfrei https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2 kostenfrei https://ieeexplore.ieee.org/document/9785788/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 57718-57735 |
language |
English |
source |
In IEEE Access 10(2022), Seite 57718-57735 volume:10 year:2022 pages:57718-57735 |
sourceStr |
In IEEE Access 10(2022), Seite 57718-57735 volume:10 year:2022 pages:57718-57735 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
SiC MOSFET boost circuit synchronous working mode self-adaption dead-time continuous mode discontinuous mode loss Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Lei Zhang @@aut@@ Lei Ren @@aut@@ Shugen Bai @@aut@@ Shun Sang @@aut@@ Jiejie Huang @@aut@@ Xinsong Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ041686594 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041686594</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308051846.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3179403</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041686594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa8905be66fea4f77930e2186b878a2c2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiC MOSFET boost circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronous working mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-adaption dead-time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discontinuous mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">loss</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shugen Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Sang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinsong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 57718-57735</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:57718-57735</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3179403</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9785788/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">57718-57735</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lei Zhang |
spellingShingle |
Lei Zhang misc TK1-9971 misc SiC MOSFET boost circuit misc synchronous working mode misc self-adaption dead-time misc continuous mode misc discontinuous mode misc loss misc Electrical engineering. Electronics. Nuclear engineering Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode |
authorStr |
Lei Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode SiC MOSFET boost circuit synchronous working mode self-adaption dead-time continuous mode discontinuous mode loss |
topic |
misc TK1-9971 misc SiC MOSFET boost circuit misc synchronous working mode misc self-adaption dead-time misc continuous mode misc discontinuous mode misc loss misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc SiC MOSFET boost circuit misc synchronous working mode misc self-adaption dead-time misc continuous mode misc discontinuous mode misc loss misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc SiC MOSFET boost circuit misc synchronous working mode misc self-adaption dead-time misc continuous mode misc discontinuous mode misc loss misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode |
ctrlnum |
(DE-627)DOAJ041686594 (DE-599)DOAJa8905be66fea4f77930e2186b878a2c2 |
title_full |
Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode |
author_sort |
Lei Zhang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
57718 |
author_browse |
Lei Zhang Lei Ren Shugen Bai Shun Sang Jiejie Huang Xinsong Zhang |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Lei Zhang |
doi_str_mv |
10.1109/ACCESS.2022.3179403 |
author2-role |
verfasserin |
title_sort |
self-adaption dead-time setting for the sic mosfet boost circuit in the synchronous working mode |
callnumber |
TK1-9971 |
title_auth |
Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode |
abstract |
To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. |
abstractGer |
To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. |
abstract_unstemmed |
To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode |
url |
https://doi.org/10.1109/ACCESS.2022.3179403 https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2 https://ieeexplore.ieee.org/document/9785788/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lei Ren Shugen Bai Shun Sang Jiejie Huang Xinsong Zhang |
author2Str |
Lei Ren Shugen Bai Shun Sang Jiejie Huang Xinsong Zhang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3179403 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T21:36:21.672Z |
_version_ |
1803595370126639104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041686594</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308051846.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3179403</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041686594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa8905be66fea4f77930e2186b878a2c2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-Adaption Dead-Time Setting for the SiC MOSFET Boost Circuit in the Synchronous Working Mode</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the DC-bus voltage and the switching frequency of the boost circuit and reduce the volume of the passive filter element and the heatsink, the SiC MOSFET should be used as the main switching device. It is necessary to keep the SiC MOSFET working in the synchronous working mode to minimize the on-state loss of the SiC MOSFET. In this mode, the dead-time should be inserted into the gate signals of two SiC MOSFETs in the bridge. However, because of the high switching frequency and the output capacitance of the SiC MOSFET and the freewheeling SiC diode, there will be a large loss during the dead-time. Thus, a self-adaption dead-time setting has been proposed in this paper. Firstly, it analyzes the detailed switching process and establishes the models around dead-times when the SiC MOSFET boost circuit works in the continuous and discontinuous mode respectively. Secondly, based on the analyses and models, the dead-time before the active SiC MOSFET turns on can be set as a fixed value calculated by the parameters of the SiC MOSFET and the driver board in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<) and can be set as a variable value relevant to the duty cycle, the switching period, the input and output voltage in the discontinuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {discon}}$ </tex-math<</inline-formula<). Thirdly, also based on the analyses and models, the dead-time after the active SiC MOSFET turns off can be set as a variable value in the continuous mode (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {con}}$ </tex-math<</inline-formula<), which depends on the real-time measured output voltage, the real-time measured maximum current in the boost inductor and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula<. In the discontinuous mode, it can be set as a variable value relevant to the real-time measured output voltage, the inductance value, the duty cycle, the switching period, the input voltage and the value of <inline-formula< <tex-math notation="LaTeX"<$T_{\text {d1}}{}^{\text {con}}$ </tex-math<</inline-formula< (<inline-formula< <tex-math notation="LaTeX"<$T_{\text {d2}}{}^{\text {discon}}$ </tex-math<</inline-formula<). The dead-times before the active SiC MOSFET turns on and after the active SiC MOSFET turns off in the continuous and discontinuous mode constitute the self-adaption dead-time, which can be automatically adjusted according to circuit parameters and decrease the loss around the dead-time especially at the high switching frequency. The effectiveness of the proposed self-adaption dead-time setting is proved by the experiment finally, which can reduce the loss by 12.5% in the continuous mode when the output voltage is 400V, the output power is 880W and the switching frequency is 100kHz and can reduce the loss by 12.0% in the discontinuous mode when the output voltage is 400V, the output power is 440W and the switching frequency is 20kHz.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiC MOSFET boost circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronous working mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-adaption dead-time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discontinuous mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">loss</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shugen Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Sang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinsong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 57718-57735</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:57718-57735</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3179403</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a8905be66fea4f77930e2186b878a2c2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9785788/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">57718-57735</subfield></datafield></record></collection>
|
score |
7.4008827 |