Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages
Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in t...
Ausführliche Beschreibung
Autor*in: |
Wei Du [verfasserIn] Jian Ding [verfasserIn] Shunguang Lu [verfasserIn] Xiufeng Wen [verfasserIn] Jianzhong Hu [verfasserIn] Chengjiang Ruan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Plant Biology - BMC, 2003, 22(2022), 1, Seite 13 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:1 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1186/s12870-022-03688-5 |
---|
Katalog-ID: |
DOAJ041697545 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ041697545 | ||
003 | DE-627 | ||
005 | 20230308051928.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12870-022-03688-5 |2 doi | |
035 | |a (DE-627)DOAJ041697545 | ||
035 | |a (DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Wei Du |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. | ||
650 | 4 | |a Sea buckthorn | |
650 | 4 | |a TAG biosynthesis | |
650 | 4 | |a Flavonoid biosynthesis | |
650 | 4 | |a Cultivar variation | |
650 | 4 | |a Proteomics | |
653 | 0 | |a Botany | |
700 | 0 | |a Jian Ding |e verfasserin |4 aut | |
700 | 0 | |a Shunguang Lu |e verfasserin |4 aut | |
700 | 0 | |a Xiufeng Wen |e verfasserin |4 aut | |
700 | 0 | |a Jianzhong Hu |e verfasserin |4 aut | |
700 | 0 | |a Chengjiang Ruan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Plant Biology |d BMC, 2003 |g 22(2022), 1, Seite 13 |w (DE-627)335489060 |w (DE-600)2059868-3 |x 14712229 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:1 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12870-022-03688-5 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12870-022-03688-5 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2229 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 1 |h 13 |
author_variant |
w d wd j d jd s l sl x w xw j h jh c r cr |
---|---|
matchkey_str |
article:14712229:2022----::dniiainfhkylvniadiisnhssrtisnhplotoebctonutvr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QK |
publishDate |
2022 |
allfields |
10.1186/s12870-022-03688-5 doi (DE-627)DOAJ041697545 (DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0 DE-627 ger DE-627 rakwb eng QK1-989 Wei Du verfasserin aut Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. Sea buckthorn TAG biosynthesis Flavonoid biosynthesis Cultivar variation Proteomics Botany Jian Ding verfasserin aut Shunguang Lu verfasserin aut Xiufeng Wen verfasserin aut Jianzhong Hu verfasserin aut Chengjiang Ruan verfasserin aut In BMC Plant Biology BMC, 2003 22(2022), 1, Seite 13 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:22 year:2022 number:1 pages:13 https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0 kostenfrei https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 13 |
spelling |
10.1186/s12870-022-03688-5 doi (DE-627)DOAJ041697545 (DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0 DE-627 ger DE-627 rakwb eng QK1-989 Wei Du verfasserin aut Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. Sea buckthorn TAG biosynthesis Flavonoid biosynthesis Cultivar variation Proteomics Botany Jian Ding verfasserin aut Shunguang Lu verfasserin aut Xiufeng Wen verfasserin aut Jianzhong Hu verfasserin aut Chengjiang Ruan verfasserin aut In BMC Plant Biology BMC, 2003 22(2022), 1, Seite 13 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:22 year:2022 number:1 pages:13 https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0 kostenfrei https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 13 |
allfields_unstemmed |
10.1186/s12870-022-03688-5 doi (DE-627)DOAJ041697545 (DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0 DE-627 ger DE-627 rakwb eng QK1-989 Wei Du verfasserin aut Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. Sea buckthorn TAG biosynthesis Flavonoid biosynthesis Cultivar variation Proteomics Botany Jian Ding verfasserin aut Shunguang Lu verfasserin aut Xiufeng Wen verfasserin aut Jianzhong Hu verfasserin aut Chengjiang Ruan verfasserin aut In BMC Plant Biology BMC, 2003 22(2022), 1, Seite 13 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:22 year:2022 number:1 pages:13 https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0 kostenfrei https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 13 |
allfieldsGer |
10.1186/s12870-022-03688-5 doi (DE-627)DOAJ041697545 (DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0 DE-627 ger DE-627 rakwb eng QK1-989 Wei Du verfasserin aut Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. Sea buckthorn TAG biosynthesis Flavonoid biosynthesis Cultivar variation Proteomics Botany Jian Ding verfasserin aut Shunguang Lu verfasserin aut Xiufeng Wen verfasserin aut Jianzhong Hu verfasserin aut Chengjiang Ruan verfasserin aut In BMC Plant Biology BMC, 2003 22(2022), 1, Seite 13 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:22 year:2022 number:1 pages:13 https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0 kostenfrei https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 13 |
allfieldsSound |
10.1186/s12870-022-03688-5 doi (DE-627)DOAJ041697545 (DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0 DE-627 ger DE-627 rakwb eng QK1-989 Wei Du verfasserin aut Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. Sea buckthorn TAG biosynthesis Flavonoid biosynthesis Cultivar variation Proteomics Botany Jian Ding verfasserin aut Shunguang Lu verfasserin aut Xiufeng Wen verfasserin aut Jianzhong Hu verfasserin aut Chengjiang Ruan verfasserin aut In BMC Plant Biology BMC, 2003 22(2022), 1, Seite 13 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:22 year:2022 number:1 pages:13 https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0 kostenfrei https://doi.org/10.1186/s12870-022-03688-5 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 13 |
language |
English |
source |
In BMC Plant Biology 22(2022), 1, Seite 13 volume:22 year:2022 number:1 pages:13 |
sourceStr |
In BMC Plant Biology 22(2022), 1, Seite 13 volume:22 year:2022 number:1 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sea buckthorn TAG biosynthesis Flavonoid biosynthesis Cultivar variation Proteomics Botany |
isfreeaccess_bool |
true |
container_title |
BMC Plant Biology |
authorswithroles_txt_mv |
Wei Du @@aut@@ Jian Ding @@aut@@ Shunguang Lu @@aut@@ Xiufeng Wen @@aut@@ Jianzhong Hu @@aut@@ Chengjiang Ruan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
335489060 |
id |
DOAJ041697545 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041697545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308051928.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12870-022-03688-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041697545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea buckthorn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TAG biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flavonoid biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cultivar variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shunguang Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiufeng Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianzhong Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengjiang Ruan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Plant Biology</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">22(2022), 1, Seite 13</subfield><subfield code="w">(DE-627)335489060</subfield><subfield code="w">(DE-600)2059868-3</subfield><subfield code="x">14712229</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12870-022-03688-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12870-022-03688-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2229</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wei Du |
spellingShingle |
Wei Du misc QK1-989 misc Sea buckthorn misc TAG biosynthesis misc Flavonoid biosynthesis misc Cultivar variation misc Proteomics misc Botany Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages |
authorStr |
Wei Du |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335489060 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
14712229 |
topic_title |
QK1-989 Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages Sea buckthorn TAG biosynthesis Flavonoid biosynthesis Cultivar variation Proteomics |
topic |
misc QK1-989 misc Sea buckthorn misc TAG biosynthesis misc Flavonoid biosynthesis misc Cultivar variation misc Proteomics misc Botany |
topic_unstemmed |
misc QK1-989 misc Sea buckthorn misc TAG biosynthesis misc Flavonoid biosynthesis misc Cultivar variation misc Proteomics misc Botany |
topic_browse |
misc QK1-989 misc Sea buckthorn misc TAG biosynthesis misc Flavonoid biosynthesis misc Cultivar variation misc Proteomics misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Plant Biology |
hierarchy_parent_id |
335489060 |
hierarchy_top_title |
BMC Plant Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)335489060 (DE-600)2059868-3 |
title |
Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages |
ctrlnum |
(DE-627)DOAJ041697545 (DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0 |
title_full |
Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages |
author_sort |
Wei Du |
journal |
BMC Plant Biology |
journalStr |
BMC Plant Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Wei Du Jian Ding Shunguang Lu Xiufeng Wen Jianzhong Hu Chengjiang Ruan |
container_volume |
22 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Wei Du |
doi_str_mv |
10.1186/s12870-022-03688-5 |
author2-role |
verfasserin |
title_sort |
identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages |
callnumber |
QK1-989 |
title_auth |
Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages |
abstract |
Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. |
abstractGer |
Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. |
abstract_unstemmed |
Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages |
url |
https://doi.org/10.1186/s12870-022-03688-5 https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0 https://doaj.org/toc/1471-2229 |
remote_bool |
true |
author2 |
Jian Ding Shunguang Lu Xiufeng Wen Jianzhong Hu Chengjiang Ruan |
author2Str |
Jian Ding Shunguang Lu Xiufeng Wen Jianzhong Hu Chengjiang Ruan |
ppnlink |
335489060 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12870-022-03688-5 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T21:39:54.538Z |
_version_ |
1803595593331769344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041697545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308051928.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12870-022-03688-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041697545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ600b350e64f441e5b94ed2de3e5ba6e0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of the key flavonoid and lipid synthesis proteins in the pulp of two sea buckthorn cultivars at different developmental stages</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Sea buckthorn is an economically important woody plant for desertification control and water soil conservation. Its berry pulp is rich in flavonoids and unsaturated fatty acids. Cultivars containing high oil and flavonoid contents have higher economic value and will increase in the planting area. However, the cause of the differences in oil and flavonoid contents among cultivars is still unclear. The influence of key enzymes in the lipid and flavonoid synthesis pathways on their content needs to be explored and clarified. Results The flavonoid content in XE (Xin’e 3) was 54% higher than that in SJ (Suiji 1). Rutin was the main flavonoid in sea buckthorn pulp, and the differences in the rutin content could cause flavonoid differences between the two cultivars. The oil content of XE was 31.58% higher than that of SJ, and the difference in oil content was highest at 50–70 DAF. High-throughput proteomics was used to quantify key enzymes of flavonoid and lipid synthesis pathways in two cultivars at three developmental stages. By functional annotation and KEGG analysis, 41 key enzymes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, fatty acid biosynthesis and TAG biosynthesis were quantified. CHS, F3H, ANS, fabD, FATA, FAB2, LPIN and plcC showed significant differences between the two cultivars. In addition, we quantified 6 oleosins. With the exception of a 16 kDa oleosin, the other oleosins in the two cultivars were positively correlated with oil content. Conclusions In the flavonoid synthesis pathway, CHS and F3H were the main enzymes responsible for the difference in flavonoid content between the two cultivars. In the lipid synthesis pathway, LPIN, plcC and MGD were the main enzymes with different contents in the middle to late stages. Higher contents of LPIN and plcC in XE than in SJ could cause DAG to generate TAG from PC, since the difference in DGAT between the two cultivars was not significant. Investigating the causes of flavonoid and oil content differences among different cultivars from the perspective of proteomics, could provide a basis for understanding the regulatory mechanism of flavonoids and lipid synthesis in sea buckthorn pulp.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea buckthorn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TAG biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flavonoid biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cultivar variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shunguang Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiufeng Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianzhong Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengjiang Ruan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Plant Biology</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">22(2022), 1, Seite 13</subfield><subfield code="w">(DE-627)335489060</subfield><subfield code="w">(DE-600)2059868-3</subfield><subfield code="x">14712229</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12870-022-03688-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/600b350e64f441e5b94ed2de3e5ba6e0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12870-022-03688-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2229</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.401742 |