Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision
Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information...
Ausführliche Beschreibung
Autor*in: |
Yupeng Zhang [verfasserIn] Gaowei Zhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Applied Bionics and Biomechanics - Hindawi Limited, 2015, (2022) |
---|---|
Übergeordnetes Werk: |
year:2022 |
Links: |
---|
DOI / URN: |
10.1155/2022/6230025 |
---|
Katalog-ID: |
DOAJ041793625 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ041793625 | ||
003 | DE-627 | ||
005 | 20230502071228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2022/6230025 |2 doi | |
035 | |a (DE-627)DOAJ041793625 | ||
035 | |a (DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Yupeng Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. | ||
653 | 0 | |a Biotechnology | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Gaowei Zhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Bionics and Biomechanics |d Hindawi Limited, 2015 |g (2022) |w (DE-627)481278265 |w (DE-600)2179924-6 |x 17542103 |7 nnns |
773 | 1 | 8 | |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.1155/2022/6230025 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2022/6230025 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1754-2103 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2022 |
author_variant |
y z yz g z gz |
---|---|
matchkey_str |
article:17542103:2022----::osraieramnadeaiiainriigorcufmrsernaktal |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.1155/2022/6230025 doi (DE-627)DOAJ041793625 (DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH301-705.5 Yupeng Zhang verfasserin aut Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. Biotechnology Biology (General) Gaowei Zhao verfasserin aut In Applied Bionics and Biomechanics Hindawi Limited, 2015 (2022) (DE-627)481278265 (DE-600)2179924-6 17542103 nnns year:2022 https://doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117 kostenfrei http://dx.doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/toc/1754-2103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
spelling |
10.1155/2022/6230025 doi (DE-627)DOAJ041793625 (DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH301-705.5 Yupeng Zhang verfasserin aut Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. Biotechnology Biology (General) Gaowei Zhao verfasserin aut In Applied Bionics and Biomechanics Hindawi Limited, 2015 (2022) (DE-627)481278265 (DE-600)2179924-6 17542103 nnns year:2022 https://doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117 kostenfrei http://dx.doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/toc/1754-2103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfields_unstemmed |
10.1155/2022/6230025 doi (DE-627)DOAJ041793625 (DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH301-705.5 Yupeng Zhang verfasserin aut Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. Biotechnology Biology (General) Gaowei Zhao verfasserin aut In Applied Bionics and Biomechanics Hindawi Limited, 2015 (2022) (DE-627)481278265 (DE-600)2179924-6 17542103 nnns year:2022 https://doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117 kostenfrei http://dx.doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/toc/1754-2103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsGer |
10.1155/2022/6230025 doi (DE-627)DOAJ041793625 (DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH301-705.5 Yupeng Zhang verfasserin aut Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. Biotechnology Biology (General) Gaowei Zhao verfasserin aut In Applied Bionics and Biomechanics Hindawi Limited, 2015 (2022) (DE-627)481278265 (DE-600)2179924-6 17542103 nnns year:2022 https://doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117 kostenfrei http://dx.doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/toc/1754-2103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsSound |
10.1155/2022/6230025 doi (DE-627)DOAJ041793625 (DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH301-705.5 Yupeng Zhang verfasserin aut Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. Biotechnology Biology (General) Gaowei Zhao verfasserin aut In Applied Bionics and Biomechanics Hindawi Limited, 2015 (2022) (DE-627)481278265 (DE-600)2179924-6 17542103 nnns year:2022 https://doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117 kostenfrei http://dx.doi.org/10.1155/2022/6230025 kostenfrei https://doaj.org/toc/1754-2103 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
language |
English |
source |
In Applied Bionics and Biomechanics (2022) year:2022 |
sourceStr |
In Applied Bionics and Biomechanics (2022) year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biotechnology Biology (General) |
isfreeaccess_bool |
true |
container_title |
Applied Bionics and Biomechanics |
authorswithroles_txt_mv |
Yupeng Zhang @@aut@@ Gaowei Zhao @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
481278265 |
id |
DOAJ041793625 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041793625</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502071228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2022/6230025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041793625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yupeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gaowei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Bionics and Biomechanics</subfield><subfield code="d">Hindawi Limited, 2015</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)481278265</subfield><subfield code="w">(DE-600)2179924-6</subfield><subfield code="x">17542103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2022/6230025</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2022/6230025</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1754-2103</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yupeng Zhang |
spellingShingle |
Yupeng Zhang misc TP248.13-248.65 misc QH301-705.5 misc Biotechnology misc Biology (General) Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision |
authorStr |
Yupeng Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)481278265 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
17542103 |
topic_title |
TP248.13-248.65 QH301-705.5 Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision |
topic |
misc TP248.13-248.65 misc QH301-705.5 misc Biotechnology misc Biology (General) |
topic_unstemmed |
misc TP248.13-248.65 misc QH301-705.5 misc Biotechnology misc Biology (General) |
topic_browse |
misc TP248.13-248.65 misc QH301-705.5 misc Biotechnology misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Bionics and Biomechanics |
hierarchy_parent_id |
481278265 |
hierarchy_top_title |
Applied Bionics and Biomechanics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)481278265 (DE-600)2179924-6 |
title |
Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision |
ctrlnum |
(DE-627)DOAJ041793625 (DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117 |
title_full |
Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision |
author_sort |
Yupeng Zhang |
journal |
Applied Bionics and Biomechanics |
journalStr |
Applied Bionics and Biomechanics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yupeng Zhang Gaowei Zhao |
class |
TP248.13-248.65 QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Yupeng Zhang |
doi_str_mv |
10.1155/2022/6230025 |
author2-role |
verfasserin |
title_sort |
conservative treatment and rehabilitation training for rectus femoris tear in basketball training based on computer vision |
callnumber |
TP248.13-248.65 |
title_auth |
Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision |
abstract |
Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. |
abstractGer |
Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. |
abstract_unstemmed |
Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision |
url |
https://doi.org/10.1155/2022/6230025 https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117 http://dx.doi.org/10.1155/2022/6230025 https://doaj.org/toc/1754-2103 |
remote_bool |
true |
author2 |
Gaowei Zhao |
author2Str |
Gaowei Zhao |
ppnlink |
481278265 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2022/6230025 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T22:10:26.482Z |
_version_ |
1803597514260086784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ041793625</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502071228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2022/6230025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ041793625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c4fe6fc782e442b91e6f14faf01c117</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yupeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conservative Treatment and Rehabilitation Training for Rectus Femoris Tear in Basketball Training Based on Computer Vision</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computer vision is an emerging artificial intelligence subject, whose purpose is to make computers have the same ability to perceive and understand image semantic information as humans. Computer vision technology is based on high-performance computers, which can obtain massive amounts of information and data in a short period of time and use intelligent algorithms to perform high-speed data processing on the information, which is conducive to the integration of information related to product design, production process management, etc. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, computer vision technology has been widely used in the fields of food, medicine, construction, chemical industry, electronics, packaging, and automobiles. This article uses computer vision technology to compare four conservative treatments and rehabilitation training for rectus femoris in basketball training and analyze the best rehabilitation treatment for rectus femoris tear. The experimental results show that the average electroacupuncture plus muscle stretching exercise group after treatment has an average EMG value of 55.49, an average muscle strength rating of five, an average motor function score of 23.45, and an average treatment recovery time of 11.6 days. This group has the best treatment effect.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gaowei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Bionics and Biomechanics</subfield><subfield code="d">Hindawi Limited, 2015</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)481278265</subfield><subfield code="w">(DE-600)2179924-6</subfield><subfield code="x">17542103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2022/6230025</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c4fe6fc782e442b91e6f14faf01c117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2022/6230025</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1754-2103</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.400772 |