Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis
China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, wh...
Ausführliche Beschreibung
Autor*in: |
Ying Su [verfasserIn] Jingna Pan [verfasserIn] Haifei Wu [verfasserIn] Shuang Sun [verfasserIn] Zubing Zou [verfasserIn] Jiaqi Li [verfasserIn] Bingrong Pan [verfasserIn] Honglu Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy Reports - Elsevier, 2016, 8(2022), Seite 6270-6279 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; pages:6270-6279 |
Links: |
---|
DOI / URN: |
10.1016/j.egyr.2022.04.072 |
---|
Katalog-ID: |
DOAJ042004640 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ042004640 | ||
003 | DE-627 | ||
005 | 20230502212608.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.egyr.2022.04.072 |2 doi | |
035 | |a (DE-627)DOAJ042004640 | ||
035 | |a (DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Ying Su |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. | ||
650 | 4 | |a Photovoltaic strings | |
650 | 4 | |a Uncertainty analysis | |
650 | 4 | |a Nonparametric kernel density estimation | |
650 | 4 | |a Dynamic time window | |
650 | 4 | |a Fault diagnosis | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jingna Pan |e verfasserin |4 aut | |
700 | 0 | |a Haifei Wu |e verfasserin |4 aut | |
700 | 0 | |a Shuang Sun |e verfasserin |4 aut | |
700 | 0 | |a Zubing Zou |e verfasserin |4 aut | |
700 | 0 | |a Jiaqi Li |e verfasserin |4 aut | |
700 | 0 | |a Bingrong Pan |e verfasserin |4 aut | |
700 | 0 | |a Honglu Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Reports |d Elsevier, 2016 |g 8(2022), Seite 6270-6279 |w (DE-627)820689033 |w (DE-600)2814795-9 |x 23524847 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g pages:6270-6279 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.egyr.2022.04.072 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S235248472200837X |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2352-4847 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |h 6270-6279 |
author_variant |
y s ys j p jp h w hw s s ss z z zz j l jl b p bp h z hz |
---|---|
matchkey_str |
article:23524847:2022----::yaipoaiiyoeigfhtvlactigadtapia |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1016/j.egyr.2022.04.072 doi (DE-627)DOAJ042004640 (DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b DE-627 ger DE-627 rakwb eng TK1-9971 Ying Su verfasserin aut Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. Photovoltaic strings Uncertainty analysis Nonparametric kernel density estimation Dynamic time window Fault diagnosis Electrical engineering. Electronics. Nuclear engineering Jingna Pan verfasserin aut Haifei Wu verfasserin aut Shuang Sun verfasserin aut Zubing Zou verfasserin aut Jiaqi Li verfasserin aut Bingrong Pan verfasserin aut Honglu Zhu verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 6270-6279 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:6270-6279 https://doi.org/10.1016/j.egyr.2022.04.072 kostenfrei https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b kostenfrei http://www.sciencedirect.com/science/article/pii/S235248472200837X kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 6270-6279 |
spelling |
10.1016/j.egyr.2022.04.072 doi (DE-627)DOAJ042004640 (DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b DE-627 ger DE-627 rakwb eng TK1-9971 Ying Su verfasserin aut Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. Photovoltaic strings Uncertainty analysis Nonparametric kernel density estimation Dynamic time window Fault diagnosis Electrical engineering. Electronics. Nuclear engineering Jingna Pan verfasserin aut Haifei Wu verfasserin aut Shuang Sun verfasserin aut Zubing Zou verfasserin aut Jiaqi Li verfasserin aut Bingrong Pan verfasserin aut Honglu Zhu verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 6270-6279 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:6270-6279 https://doi.org/10.1016/j.egyr.2022.04.072 kostenfrei https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b kostenfrei http://www.sciencedirect.com/science/article/pii/S235248472200837X kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 6270-6279 |
allfields_unstemmed |
10.1016/j.egyr.2022.04.072 doi (DE-627)DOAJ042004640 (DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b DE-627 ger DE-627 rakwb eng TK1-9971 Ying Su verfasserin aut Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. Photovoltaic strings Uncertainty analysis Nonparametric kernel density estimation Dynamic time window Fault diagnosis Electrical engineering. Electronics. Nuclear engineering Jingna Pan verfasserin aut Haifei Wu verfasserin aut Shuang Sun verfasserin aut Zubing Zou verfasserin aut Jiaqi Li verfasserin aut Bingrong Pan verfasserin aut Honglu Zhu verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 6270-6279 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:6270-6279 https://doi.org/10.1016/j.egyr.2022.04.072 kostenfrei https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b kostenfrei http://www.sciencedirect.com/science/article/pii/S235248472200837X kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 6270-6279 |
allfieldsGer |
10.1016/j.egyr.2022.04.072 doi (DE-627)DOAJ042004640 (DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b DE-627 ger DE-627 rakwb eng TK1-9971 Ying Su verfasserin aut Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. Photovoltaic strings Uncertainty analysis Nonparametric kernel density estimation Dynamic time window Fault diagnosis Electrical engineering. Electronics. Nuclear engineering Jingna Pan verfasserin aut Haifei Wu verfasserin aut Shuang Sun verfasserin aut Zubing Zou verfasserin aut Jiaqi Li verfasserin aut Bingrong Pan verfasserin aut Honglu Zhu verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 6270-6279 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:6270-6279 https://doi.org/10.1016/j.egyr.2022.04.072 kostenfrei https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b kostenfrei http://www.sciencedirect.com/science/article/pii/S235248472200837X kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 6270-6279 |
allfieldsSound |
10.1016/j.egyr.2022.04.072 doi (DE-627)DOAJ042004640 (DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b DE-627 ger DE-627 rakwb eng TK1-9971 Ying Su verfasserin aut Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. Photovoltaic strings Uncertainty analysis Nonparametric kernel density estimation Dynamic time window Fault diagnosis Electrical engineering. Electronics. Nuclear engineering Jingna Pan verfasserin aut Haifei Wu verfasserin aut Shuang Sun verfasserin aut Zubing Zou verfasserin aut Jiaqi Li verfasserin aut Bingrong Pan verfasserin aut Honglu Zhu verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 6270-6279 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:6270-6279 https://doi.org/10.1016/j.egyr.2022.04.072 kostenfrei https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b kostenfrei http://www.sciencedirect.com/science/article/pii/S235248472200837X kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 6270-6279 |
language |
English |
source |
In Energy Reports 8(2022), Seite 6270-6279 volume:8 year:2022 pages:6270-6279 |
sourceStr |
In Energy Reports 8(2022), Seite 6270-6279 volume:8 year:2022 pages:6270-6279 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Photovoltaic strings Uncertainty analysis Nonparametric kernel density estimation Dynamic time window Fault diagnosis Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
Energy Reports |
authorswithroles_txt_mv |
Ying Su @@aut@@ Jingna Pan @@aut@@ Haifei Wu @@aut@@ Shuang Sun @@aut@@ Zubing Zou @@aut@@ Jiaqi Li @@aut@@ Bingrong Pan @@aut@@ Honglu Zhu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
820689033 |
id |
DOAJ042004640 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042004640</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502212608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2022.04.072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042004640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photovoltaic strings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonparametric kernel density estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic time window</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault diagnosis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingna Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifei Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zubing Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaqi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingrong Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Honglu Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), Seite 6270-6279</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:6270-6279</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2022.04.072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S235248472200837X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="h">6270-6279</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ying Su |
spellingShingle |
Ying Su misc TK1-9971 misc Photovoltaic strings misc Uncertainty analysis misc Nonparametric kernel density estimation misc Dynamic time window misc Fault diagnosis misc Electrical engineering. Electronics. Nuclear engineering Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis |
authorStr |
Ying Su |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820689033 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
23524847 |
topic_title |
TK1-9971 Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis Photovoltaic strings Uncertainty analysis Nonparametric kernel density estimation Dynamic time window Fault diagnosis |
topic |
misc TK1-9971 misc Photovoltaic strings misc Uncertainty analysis misc Nonparametric kernel density estimation misc Dynamic time window misc Fault diagnosis misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Photovoltaic strings misc Uncertainty analysis misc Nonparametric kernel density estimation misc Dynamic time window misc Fault diagnosis misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Photovoltaic strings misc Uncertainty analysis misc Nonparametric kernel density estimation misc Dynamic time window misc Fault diagnosis misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Reports |
hierarchy_parent_id |
820689033 |
hierarchy_top_title |
Energy Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820689033 (DE-600)2814795-9 |
title |
Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis |
ctrlnum |
(DE-627)DOAJ042004640 (DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b |
title_full |
Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis |
author_sort |
Ying Su |
journal |
Energy Reports |
journalStr |
Energy Reports |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
6270 |
author_browse |
Ying Su Jingna Pan Haifei Wu Shuang Sun Zubing Zou Jiaqi Li Bingrong Pan Honglu Zhu |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Ying Su |
doi_str_mv |
10.1016/j.egyr.2022.04.072 |
author2-role |
verfasserin |
title_sort |
dynamic probability modeling of photovoltaic strings and its application in fault diagnosis |
callnumber |
TK1-9971 |
title_auth |
Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis |
abstract |
China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. |
abstractGer |
China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. |
abstract_unstemmed |
China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis |
url |
https://doi.org/10.1016/j.egyr.2022.04.072 https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b http://www.sciencedirect.com/science/article/pii/S235248472200837X https://doaj.org/toc/2352-4847 |
remote_bool |
true |
author2 |
Jingna Pan Haifei Wu Shuang Sun Zubing Zou Jiaqi Li Bingrong Pan Honglu Zhu |
author2Str |
Jingna Pan Haifei Wu Shuang Sun Zubing Zou Jiaqi Li Bingrong Pan Honglu Zhu |
ppnlink |
820689033 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.egyr.2022.04.072 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T23:12:11.464Z |
_version_ |
1803601399214243840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042004640</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502212608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2022.04.072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042004640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b856807fcbb46f9b5d98c8c87cda52b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">China’s installed photovoltaic (PV) capacity has surged in recent years, and the intelligent operation of PV power generation is of great significance to improve the generating of PV power stations. As the core of the PV power generation system, PV strings are exposed outdoors all the year round, which is easy to bring safety hazards affecting the safe operation of power stations. Affected by weather conditions, the output of PV strings is fluctuating, random and time-varying, which brings great challenges to fault diagnosis. Therefore, taking the uncertainty of the PV power generation system during its operation into consideration, this paper used the nonparametric kernel density estimation method to fit the probability density curve of the output for PV strings, updated the model with the dynamic time window technology, and eventually established a fault diagnosis method based on the dynamic modeling results of PV strings. Different from the typical real-time diagnosis, by setting a dynamic time window for statistical analysis, the PV strings with degraded performance that fail to be detected in real-time monitoring can be identified, which is conducive to fault diagnosis for PV power stations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photovoltaic strings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonparametric kernel density estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic time window</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault diagnosis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingna Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifei Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zubing Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaqi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingrong Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Honglu Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), Seite 6270-6279</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:6270-6279</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2022.04.072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b856807fcbb46f9b5d98c8c87cda52b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S235248472200837X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="h">6270-6279</subfield></datafield></record></collection>
|
score |
7.401165 |