Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes
Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win...
Ausführliche Beschreibung
Autor*in: |
Shin‐ichiro S. Matsuzaki [verfasserIn] Ayato Kohzu [verfasserIn] Taku Kadoya [verfasserIn] Mirai Watanabe [verfasserIn] Takeshi Osawa [verfasserIn] Keiichi Fukaya [verfasserIn] Kazuhiro Komatsu [verfasserIn] Natsuko Kondo [verfasserIn] Haruyo Yamaguchi [verfasserIn] Haruko Ando [verfasserIn] Koichi Shimotori [verfasserIn] Megumi Nakagawa [verfasserIn] Toshikazu Kizuka [verfasserIn] Akira Yoshioka [verfasserIn] Takahiro Sasai [verfasserIn] Nobuko Saigusa [verfasserIn] Bunkei Matsushita [verfasserIn] Noriko Takamura [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecosphere - Wiley, 2016, 10(2019), 11, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2019 ; number:11 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1002/ecs2.2918 |
---|
Katalog-ID: |
DOAJ042141400 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ042141400 | ||
003 | DE-627 | ||
005 | 20230502064754.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/ecs2.2918 |2 doi | |
035 | |a (DE-627)DOAJ042141400 | ||
035 | |a (DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Shin‐ichiro S. Matsuzaki |e verfasserin |4 aut | |
245 | 1 | 0 | |a Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. | ||
650 | 4 | |a abandonment | |
650 | 4 | |a agricultural ponds | |
650 | 4 | |a croplands | |
650 | 4 | |a ecosystem services | |
650 | 4 | |a landscape composition | |
650 | 4 | |a mitigation | |
653 | 0 | |a Ecology | |
700 | 0 | |a Ayato Kohzu |e verfasserin |4 aut | |
700 | 0 | |a Taku Kadoya |e verfasserin |4 aut | |
700 | 0 | |a Mirai Watanabe |e verfasserin |4 aut | |
700 | 0 | |a Takeshi Osawa |e verfasserin |4 aut | |
700 | 0 | |a Keiichi Fukaya |e verfasserin |4 aut | |
700 | 0 | |a Kazuhiro Komatsu |e verfasserin |4 aut | |
700 | 0 | |a Natsuko Kondo |e verfasserin |4 aut | |
700 | 0 | |a Haruyo Yamaguchi |e verfasserin |4 aut | |
700 | 0 | |a Haruko Ando |e verfasserin |4 aut | |
700 | 0 | |a Koichi Shimotori |e verfasserin |4 aut | |
700 | 0 | |a Megumi Nakagawa |e verfasserin |4 aut | |
700 | 0 | |a Toshikazu Kizuka |e verfasserin |4 aut | |
700 | 0 | |a Akira Yoshioka |e verfasserin |4 aut | |
700 | 0 | |a Takahiro Sasai |e verfasserin |4 aut | |
700 | 0 | |a Nobuko Saigusa |e verfasserin |4 aut | |
700 | 0 | |a Bunkei Matsushita |e verfasserin |4 aut | |
700 | 0 | |a Noriko Takamura |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecosphere |d Wiley, 2016 |g 10(2019), 11, Seite n/a-n/a |w (DE-627)635133679 |w (DE-600)2572257-8 |x 21508925 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2019 |g number:11 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/ecs2.2918 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/ecs2.2918 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2150-8925 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2019 |e 11 |h n/a-n/a |
author_variant |
s s m ssm a k ak t k tk m w mw t o to k f kf k k kk n k nk h y hy h a ha k s ks m n mn t k tk a y ay t s ts n s ns b m bm n t nt |
---|---|
matchkey_str |
article:21508925:2019----::oefelnsniiaightaefbtenrprdcinnwtrult |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QH |
publishDate |
2019 |
allfields |
10.1002/ecs2.2918 doi (DE-627)DOAJ042141400 (DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23 DE-627 ger DE-627 rakwb eng QH540-549.5 Shin‐ichiro S. Matsuzaki verfasserin aut Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. abandonment agricultural ponds croplands ecosystem services landscape composition mitigation Ecology Ayato Kohzu verfasserin aut Taku Kadoya verfasserin aut Mirai Watanabe verfasserin aut Takeshi Osawa verfasserin aut Keiichi Fukaya verfasserin aut Kazuhiro Komatsu verfasserin aut Natsuko Kondo verfasserin aut Haruyo Yamaguchi verfasserin aut Haruko Ando verfasserin aut Koichi Shimotori verfasserin aut Megumi Nakagawa verfasserin aut Toshikazu Kizuka verfasserin aut Akira Yoshioka verfasserin aut Takahiro Sasai verfasserin aut Nobuko Saigusa verfasserin aut Bunkei Matsushita verfasserin aut Noriko Takamura verfasserin aut In Ecosphere Wiley, 2016 10(2019), 11, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:10 year:2019 number:11 pages:n/a-n/a https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23 kostenfrei https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11 n/a-n/a |
spelling |
10.1002/ecs2.2918 doi (DE-627)DOAJ042141400 (DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23 DE-627 ger DE-627 rakwb eng QH540-549.5 Shin‐ichiro S. Matsuzaki verfasserin aut Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. abandonment agricultural ponds croplands ecosystem services landscape composition mitigation Ecology Ayato Kohzu verfasserin aut Taku Kadoya verfasserin aut Mirai Watanabe verfasserin aut Takeshi Osawa verfasserin aut Keiichi Fukaya verfasserin aut Kazuhiro Komatsu verfasserin aut Natsuko Kondo verfasserin aut Haruyo Yamaguchi verfasserin aut Haruko Ando verfasserin aut Koichi Shimotori verfasserin aut Megumi Nakagawa verfasserin aut Toshikazu Kizuka verfasserin aut Akira Yoshioka verfasserin aut Takahiro Sasai verfasserin aut Nobuko Saigusa verfasserin aut Bunkei Matsushita verfasserin aut Noriko Takamura verfasserin aut In Ecosphere Wiley, 2016 10(2019), 11, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:10 year:2019 number:11 pages:n/a-n/a https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23 kostenfrei https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11 n/a-n/a |
allfields_unstemmed |
10.1002/ecs2.2918 doi (DE-627)DOAJ042141400 (DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23 DE-627 ger DE-627 rakwb eng QH540-549.5 Shin‐ichiro S. Matsuzaki verfasserin aut Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. abandonment agricultural ponds croplands ecosystem services landscape composition mitigation Ecology Ayato Kohzu verfasserin aut Taku Kadoya verfasserin aut Mirai Watanabe verfasserin aut Takeshi Osawa verfasserin aut Keiichi Fukaya verfasserin aut Kazuhiro Komatsu verfasserin aut Natsuko Kondo verfasserin aut Haruyo Yamaguchi verfasserin aut Haruko Ando verfasserin aut Koichi Shimotori verfasserin aut Megumi Nakagawa verfasserin aut Toshikazu Kizuka verfasserin aut Akira Yoshioka verfasserin aut Takahiro Sasai verfasserin aut Nobuko Saigusa verfasserin aut Bunkei Matsushita verfasserin aut Noriko Takamura verfasserin aut In Ecosphere Wiley, 2016 10(2019), 11, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:10 year:2019 number:11 pages:n/a-n/a https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23 kostenfrei https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11 n/a-n/a |
allfieldsGer |
10.1002/ecs2.2918 doi (DE-627)DOAJ042141400 (DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23 DE-627 ger DE-627 rakwb eng QH540-549.5 Shin‐ichiro S. Matsuzaki verfasserin aut Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. abandonment agricultural ponds croplands ecosystem services landscape composition mitigation Ecology Ayato Kohzu verfasserin aut Taku Kadoya verfasserin aut Mirai Watanabe verfasserin aut Takeshi Osawa verfasserin aut Keiichi Fukaya verfasserin aut Kazuhiro Komatsu verfasserin aut Natsuko Kondo verfasserin aut Haruyo Yamaguchi verfasserin aut Haruko Ando verfasserin aut Koichi Shimotori verfasserin aut Megumi Nakagawa verfasserin aut Toshikazu Kizuka verfasserin aut Akira Yoshioka verfasserin aut Takahiro Sasai verfasserin aut Nobuko Saigusa verfasserin aut Bunkei Matsushita verfasserin aut Noriko Takamura verfasserin aut In Ecosphere Wiley, 2016 10(2019), 11, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:10 year:2019 number:11 pages:n/a-n/a https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23 kostenfrei https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11 n/a-n/a |
allfieldsSound |
10.1002/ecs2.2918 doi (DE-627)DOAJ042141400 (DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23 DE-627 ger DE-627 rakwb eng QH540-549.5 Shin‐ichiro S. Matsuzaki verfasserin aut Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. abandonment agricultural ponds croplands ecosystem services landscape composition mitigation Ecology Ayato Kohzu verfasserin aut Taku Kadoya verfasserin aut Mirai Watanabe verfasserin aut Takeshi Osawa verfasserin aut Keiichi Fukaya verfasserin aut Kazuhiro Komatsu verfasserin aut Natsuko Kondo verfasserin aut Haruyo Yamaguchi verfasserin aut Haruko Ando verfasserin aut Koichi Shimotori verfasserin aut Megumi Nakagawa verfasserin aut Toshikazu Kizuka verfasserin aut Akira Yoshioka verfasserin aut Takahiro Sasai verfasserin aut Nobuko Saigusa verfasserin aut Bunkei Matsushita verfasserin aut Noriko Takamura verfasserin aut In Ecosphere Wiley, 2016 10(2019), 11, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:10 year:2019 number:11 pages:n/a-n/a https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23 kostenfrei https://doi.org/10.1002/ecs2.2918 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11 n/a-n/a |
language |
English |
source |
In Ecosphere 10(2019), 11, Seite n/a-n/a volume:10 year:2019 number:11 pages:n/a-n/a |
sourceStr |
In Ecosphere 10(2019), 11, Seite n/a-n/a volume:10 year:2019 number:11 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
abandonment agricultural ponds croplands ecosystem services landscape composition mitigation Ecology |
isfreeaccess_bool |
true |
container_title |
Ecosphere |
authorswithroles_txt_mv |
Shin‐ichiro S. Matsuzaki @@aut@@ Ayato Kohzu @@aut@@ Taku Kadoya @@aut@@ Mirai Watanabe @@aut@@ Takeshi Osawa @@aut@@ Keiichi Fukaya @@aut@@ Kazuhiro Komatsu @@aut@@ Natsuko Kondo @@aut@@ Haruyo Yamaguchi @@aut@@ Haruko Ando @@aut@@ Koichi Shimotori @@aut@@ Megumi Nakagawa @@aut@@ Toshikazu Kizuka @@aut@@ Akira Yoshioka @@aut@@ Takahiro Sasai @@aut@@ Nobuko Saigusa @@aut@@ Bunkei Matsushita @@aut@@ Noriko Takamura @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
635133679 |
id |
DOAJ042141400 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042141400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502064754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ecs2.2918</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042141400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shin‐ichiro S. Matsuzaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">abandonment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agricultural ponds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">croplands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ecosystem services</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">landscape composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mitigation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayato Kohzu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taku Kadoya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirai Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takeshi Osawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keiichi Fukaya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuhiro Komatsu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natsuko Kondo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haruyo Yamaguchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haruko Ando</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Koichi Shimotori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Megumi Nakagawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshikazu Kizuka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akira Yoshioka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takahiro Sasai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nobuko Saigusa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bunkei Matsushita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Noriko Takamura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecosphere</subfield><subfield code="d">Wiley, 2016</subfield><subfield code="g">10(2019), 11, Seite n/a-n/a</subfield><subfield code="w">(DE-627)635133679</subfield><subfield code="w">(DE-600)2572257-8</subfield><subfield code="x">21508925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.2918</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.2918</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-8925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">11</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Shin‐ichiro S. Matsuzaki |
spellingShingle |
Shin‐ichiro S. Matsuzaki misc QH540-549.5 misc abandonment misc agricultural ponds misc croplands misc ecosystem services misc landscape composition misc mitigation misc Ecology Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes |
authorStr |
Shin‐ichiro S. Matsuzaki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)635133679 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
21508925 |
topic_title |
QH540-549.5 Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes abandonment agricultural ponds croplands ecosystem services landscape composition mitigation |
topic |
misc QH540-549.5 misc abandonment misc agricultural ponds misc croplands misc ecosystem services misc landscape composition misc mitigation misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc abandonment misc agricultural ponds misc croplands misc ecosystem services misc landscape composition misc mitigation misc Ecology |
topic_browse |
misc QH540-549.5 misc abandonment misc agricultural ponds misc croplands misc ecosystem services misc landscape composition misc mitigation misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecosphere |
hierarchy_parent_id |
635133679 |
hierarchy_top_title |
Ecosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)635133679 (DE-600)2572257-8 |
title |
Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes |
ctrlnum |
(DE-627)DOAJ042141400 (DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23 |
title_full |
Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes |
author_sort |
Shin‐ichiro S. Matsuzaki |
journal |
Ecosphere |
journalStr |
Ecosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Shin‐ichiro S. Matsuzaki Ayato Kohzu Taku Kadoya Mirai Watanabe Takeshi Osawa Keiichi Fukaya Kazuhiro Komatsu Natsuko Kondo Haruyo Yamaguchi Haruko Ando Koichi Shimotori Megumi Nakagawa Toshikazu Kizuka Akira Yoshioka Takahiro Sasai Nobuko Saigusa Bunkei Matsushita Noriko Takamura |
container_volume |
10 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Shin‐ichiro S. Matsuzaki |
doi_str_mv |
10.1002/ecs2.2918 |
author2-role |
verfasserin |
title_sort |
role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes |
callnumber |
QH540-549.5 |
title_auth |
Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes |
abstract |
Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. |
abstractGer |
Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. |
abstract_unstemmed |
Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes |
url |
https://doi.org/10.1002/ecs2.2918 https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23 https://doaj.org/toc/2150-8925 |
remote_bool |
true |
author2 |
Ayato Kohzu Taku Kadoya Mirai Watanabe Takeshi Osawa Keiichi Fukaya Kazuhiro Komatsu Natsuko Kondo Haruyo Yamaguchi Haruko Ando Koichi Shimotori Megumi Nakagawa Toshikazu Kizuka Akira Yoshioka Takahiro Sasai Nobuko Saigusa Bunkei Matsushita Noriko Takamura |
author2Str |
Ayato Kohzu Taku Kadoya Mirai Watanabe Takeshi Osawa Keiichi Fukaya Kazuhiro Komatsu Natsuko Kondo Haruyo Yamaguchi Haruko Ando Koichi Shimotori Megumi Nakagawa Toshikazu Kizuka Akira Yoshioka Takahiro Sasai Nobuko Saigusa Bunkei Matsushita Noriko Takamura |
ppnlink |
635133679 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/ecs2.2918 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-03T23:48:40.686Z |
_version_ |
1803603694780940288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042141400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502064754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ecs2.2918</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042141400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3c4920b5ca94420c8a4f07dd2d8c9f23</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shin‐ichiro S. Matsuzaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of wetlands in mitigating the trade‐off between crop production and water quality in agricultural landscapes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Agriculture faces the great challenge of developing strategies to maintain production while simultaneously reducing environmental impacts. The trade‐off between crop production and water quality services is one of the most serious issues facing agriculture, and interest in achieving win–win outcomes through management of ecosystem services is growing. Although wetlands can reduce nitrogen loads, it is unclear whether maintaining and restoring wetlands can ameliorate the trade‐off between crop production and water quality and thereby increase the likelihood of win–win outcomes. We defined the orthogonal residuals from the regression line relating the trade‐offs between two conflicting services as the degree to which the trade‐off was mitigated (mitigation effectiveness score). The more positive the residual, the higher mitigation effectiveness score, and the greater the potential to mitigate the trade‐off. We measured nitrate concentrations, as an indicator of water quality, five times during summer and winter across 49 sub‐watersheds of the watershed of Lake Kasumigaura, which is highly nitrogen‐loaded by agriculture. We quantified the mitigation effectiveness score from the trade‐off relationships between cropland area and nitrate concentrations, and we also identified landscape and environmental factors that affected these scores. Some sub‐watersheds in our study had high cropland cover but low nitrate concentrations. Overall, we found that mitigation effectiveness scores were positively associated with wetland cover at all sampling times. Other factors, including covers of paddy rice fields, abandoned rice fields, and impervious surfaces, and dissolved organic carbon concentrations, had no significant effects on mitigation effectiveness scores, although these factors were considered to increase nitrogen removal. Our findings suggest that maintaining and restoring wetlands might mitigate the trade‐off between crop production and water quality and thereby enhance the likelihood of win–win outcomes in agricultural landscapes. Because wetland area has decreased, flooding or ponding abandoned rice fields may be an important alternative management option. The nitrate concentrations we observed met the water quality standard for drinking water, but the fact that they sometimes exceeded the nitrogen environmental target adopted within Lake Kasumigaura in terms of eutrophication suggests that simultaneous reduction of croplands and fertilizer inputs should still be encouraged.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">abandonment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agricultural ponds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">croplands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ecosystem services</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">landscape composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mitigation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayato Kohzu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taku Kadoya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirai Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takeshi Osawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keiichi Fukaya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuhiro Komatsu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natsuko Kondo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haruyo Yamaguchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haruko Ando</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Koichi Shimotori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Megumi Nakagawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshikazu Kizuka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akira Yoshioka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takahiro Sasai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nobuko Saigusa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bunkei Matsushita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Noriko Takamura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecosphere</subfield><subfield code="d">Wiley, 2016</subfield><subfield code="g">10(2019), 11, Seite n/a-n/a</subfield><subfield code="w">(DE-627)635133679</subfield><subfield code="w">(DE-600)2572257-8</subfield><subfield code="x">21508925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.2918</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3c4920b5ca94420c8a4f07dd2d8c9f23</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.2918</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-8925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">11</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.4031515 |