Improved System Frequency Regulation Capability of a Battery Energy Storage System
As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an...
Ausführliche Beschreibung
Autor*in: |
Jiejie Huang [verfasserIn] Dejian Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Energy Research - Frontiers Media S.A., 2014, 10(2022) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fenrg.2022.904430 |
---|
Katalog-ID: |
DOAJ042745608 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ042745608 | ||
003 | DE-627 | ||
005 | 20230308063940.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fenrg.2022.904430 |2 doi | |
035 | |a (DE-627)DOAJ042745608 | ||
035 | |a (DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Jiejie Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved System Frequency Regulation Capability of a Battery Energy Storage System |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. | ||
650 | 4 | |a wind generation | |
650 | 4 | |a frequency regulation | |
650 | 4 | |a BESS | |
650 | 4 | |a state of charge | |
650 | 4 | |a power system control | |
653 | 0 | |a General Works | |
653 | 0 | |a A | |
700 | 0 | |a Dejian Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Energy Research |d Frontiers Media S.A., 2014 |g 10(2022) |w (DE-627)768576768 |w (DE-600)2733788-1 |x 2296598X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fenrg.2022.904430 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-598X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |
author_variant |
j h jh d y dy |
---|---|
matchkey_str |
article:2296598X:2022----::mrvdytmrqecrgltocpbltoaatre |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3389/fenrg.2022.904430 doi (DE-627)DOAJ042745608 (DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91 DE-627 ger DE-627 rakwb eng Jiejie Huang verfasserin aut Improved System Frequency Regulation Capability of a Battery Energy Storage System 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. wind generation frequency regulation BESS state of charge power system control General Works A Dejian Yang verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.904430 kostenfrei https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
spelling |
10.3389/fenrg.2022.904430 doi (DE-627)DOAJ042745608 (DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91 DE-627 ger DE-627 rakwb eng Jiejie Huang verfasserin aut Improved System Frequency Regulation Capability of a Battery Energy Storage System 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. wind generation frequency regulation BESS state of charge power system control General Works A Dejian Yang verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.904430 kostenfrei https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfields_unstemmed |
10.3389/fenrg.2022.904430 doi (DE-627)DOAJ042745608 (DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91 DE-627 ger DE-627 rakwb eng Jiejie Huang verfasserin aut Improved System Frequency Regulation Capability of a Battery Energy Storage System 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. wind generation frequency regulation BESS state of charge power system control General Works A Dejian Yang verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.904430 kostenfrei https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsGer |
10.3389/fenrg.2022.904430 doi (DE-627)DOAJ042745608 (DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91 DE-627 ger DE-627 rakwb eng Jiejie Huang verfasserin aut Improved System Frequency Regulation Capability of a Battery Energy Storage System 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. wind generation frequency regulation BESS state of charge power system control General Works A Dejian Yang verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.904430 kostenfrei https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsSound |
10.3389/fenrg.2022.904430 doi (DE-627)DOAJ042745608 (DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91 DE-627 ger DE-627 rakwb eng Jiejie Huang verfasserin aut Improved System Frequency Regulation Capability of a Battery Energy Storage System 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. wind generation frequency regulation BESS state of charge power system control General Works A Dejian Yang verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.904430 kostenfrei https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
language |
English |
source |
In Frontiers in Energy Research 10(2022) volume:10 year:2022 |
sourceStr |
In Frontiers in Energy Research 10(2022) volume:10 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wind generation frequency regulation BESS state of charge power system control General Works A |
isfreeaccess_bool |
true |
container_title |
Frontiers in Energy Research |
authorswithroles_txt_mv |
Jiejie Huang @@aut@@ Dejian Yang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
768576768 |
id |
DOAJ042745608 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042745608</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308063940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenrg.2022.904430</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042745608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved System Frequency Regulation Capability of a Battery Energy Storage System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BESS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state of charge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dejian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Energy Research</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)768576768</subfield><subfield code="w">(DE-600)2733788-1</subfield><subfield code="x">2296598X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenrg.2022.904430</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
author |
Jiejie Huang |
spellingShingle |
Jiejie Huang misc wind generation misc frequency regulation misc BESS misc state of charge misc power system control misc General Works misc A Improved System Frequency Regulation Capability of a Battery Energy Storage System |
authorStr |
Jiejie Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768576768 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2296598X |
topic_title |
Improved System Frequency Regulation Capability of a Battery Energy Storage System wind generation frequency regulation BESS state of charge power system control |
topic |
misc wind generation misc frequency regulation misc BESS misc state of charge misc power system control misc General Works misc A |
topic_unstemmed |
misc wind generation misc frequency regulation misc BESS misc state of charge misc power system control misc General Works misc A |
topic_browse |
misc wind generation misc frequency regulation misc BESS misc state of charge misc power system control misc General Works misc A |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Energy Research |
hierarchy_parent_id |
768576768 |
hierarchy_top_title |
Frontiers in Energy Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768576768 (DE-600)2733788-1 |
title |
Improved System Frequency Regulation Capability of a Battery Energy Storage System |
ctrlnum |
(DE-627)DOAJ042745608 (DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91 |
title_full |
Improved System Frequency Regulation Capability of a Battery Energy Storage System |
author_sort |
Jiejie Huang |
journal |
Frontiers in Energy Research |
journalStr |
Frontiers in Energy Research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jiejie Huang Dejian Yang |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiejie Huang |
doi_str_mv |
10.3389/fenrg.2022.904430 |
author2-role |
verfasserin |
title_sort |
improved system frequency regulation capability of a battery energy storage system |
title_auth |
Improved System Frequency Regulation Capability of a Battery Energy Storage System |
abstract |
As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. |
abstractGer |
As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. |
abstract_unstemmed |
As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Improved System Frequency Regulation Capability of a Battery Energy Storage System |
url |
https://doi.org/10.3389/fenrg.2022.904430 https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91 https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full https://doaj.org/toc/2296-598X |
remote_bool |
true |
author2 |
Dejian Yang |
author2Str |
Dejian Yang |
ppnlink |
768576768 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fenrg.2022.904430 |
up_date |
2024-07-03T13:48:41.370Z |
_version_ |
1803565946765312000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042745608</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308063940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenrg.2022.904430</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042745608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2c2222ef7a07403e8fc105d49bf80b91</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved System Frequency Regulation Capability of a Battery Energy Storage System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a large scale of renewable energy generation including wind energy generation is integrated into a power system, the system frequency stability becomes a challenge. The battery energy storage system (BESS) is a better option for enhancing the system frequency stability. This research suggests an improved frequency regulation scheme of the BESS to suppress the maximum frequency deviation and improve the maximum rate of change of the system frequency and the system frequency of the steady state. To this end, the droop control with the input of the system frequency excursions is employed into the controller of the BESS. To improve the frequency-supporting capability and prevent the over-discharging phenomenon, the control coefficient is defined as a proportional function of the instantaneous state of charge of the BESS and excursions of the system frequency. The contributions of the proposed frequency regulation scheme are investigated with various wind power penetration level conditions and disturbances. Results clearly indicate that the proposed frequency regulation scheme of the BESS is able to achieve objectives in terms of enhancing the maximum frequency excursion, the system frequency of the steady state, and the rate of change of the system frequency under various wind power penetration level conditions, initial SOCs, and disturbances.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BESS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state of charge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dejian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Energy Research</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)768576768</subfield><subfield code="w">(DE-600)2733788-1</subfield><subfield code="x">2296598X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenrg.2022.904430</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2c2222ef7a07403e8fc105d49bf80b91</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenrg.2022.904430/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.401288 |