Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows
Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emer...
Ausführliche Beschreibung
Autor*in: |
Yong Wang [verfasserIn] Jiayi Zhe [verfasserIn] Xiuwen Wang [verfasserIn] Yaoyao Sun [verfasserIn] Haizhong Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 14(2022), 11, p 6709 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:11, p 6709 |
Links: |
---|
DOI / URN: |
10.3390/su14116709 |
---|
Katalog-ID: |
DOAJ042859395 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ042859395 | ||
003 | DE-627 | ||
005 | 20240414210929.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su14116709 |2 doi | |
035 | |a (DE-627)DOAJ042859395 | ||
035 | |a (DE-599)DOAJ68349e25762d458b8867a129a67147dc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Yong Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. | ||
650 | 4 | |a multidepot vehicle routing problem with time windows | |
650 | 4 | |a dynamic customer demands | |
650 | 4 | |a resource sharing | |
650 | 4 | |a IMOPSO-DIS algorithm | |
650 | 4 | |a collaborative network | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Jiayi Zhe |e verfasserin |4 aut | |
700 | 0 | |a Xiuwen Wang |e verfasserin |4 aut | |
700 | 0 | |a Yaoyao Sun |e verfasserin |4 aut | |
700 | 0 | |a Haizhong Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 14(2022), 11, p 6709 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:11, p 6709 |
856 | 4 | 0 | |u https://doi.org/10.3390/su14116709 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/68349e25762d458b8867a129a67147dc |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/14/11/6709 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 11, p 6709 |
author_variant |
y w yw j z jz x w xw y s ys h w hw |
---|---|
matchkey_str |
article:20711050:2022----::olbrtvmlieovhceotnpolmihyaicsoe |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TD |
publishDate |
2022 |
allfields |
10.3390/su14116709 doi (DE-627)DOAJ042859395 (DE-599)DOAJ68349e25762d458b8867a129a67147dc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yong Wang verfasserin aut Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. multidepot vehicle routing problem with time windows dynamic customer demands resource sharing IMOPSO-DIS algorithm collaborative network Environmental effects of industries and plants Renewable energy sources Environmental sciences Jiayi Zhe verfasserin aut Xiuwen Wang verfasserin aut Yaoyao Sun verfasserin aut Haizhong Wang verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6709 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6709 https://doi.org/10.3390/su14116709 kostenfrei https://doaj.org/article/68349e25762d458b8867a129a67147dc kostenfrei https://www.mdpi.com/2071-1050/14/11/6709 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6709 |
spelling |
10.3390/su14116709 doi (DE-627)DOAJ042859395 (DE-599)DOAJ68349e25762d458b8867a129a67147dc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yong Wang verfasserin aut Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. multidepot vehicle routing problem with time windows dynamic customer demands resource sharing IMOPSO-DIS algorithm collaborative network Environmental effects of industries and plants Renewable energy sources Environmental sciences Jiayi Zhe verfasserin aut Xiuwen Wang verfasserin aut Yaoyao Sun verfasserin aut Haizhong Wang verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6709 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6709 https://doi.org/10.3390/su14116709 kostenfrei https://doaj.org/article/68349e25762d458b8867a129a67147dc kostenfrei https://www.mdpi.com/2071-1050/14/11/6709 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6709 |
allfields_unstemmed |
10.3390/su14116709 doi (DE-627)DOAJ042859395 (DE-599)DOAJ68349e25762d458b8867a129a67147dc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yong Wang verfasserin aut Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. multidepot vehicle routing problem with time windows dynamic customer demands resource sharing IMOPSO-DIS algorithm collaborative network Environmental effects of industries and plants Renewable energy sources Environmental sciences Jiayi Zhe verfasserin aut Xiuwen Wang verfasserin aut Yaoyao Sun verfasserin aut Haizhong Wang verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6709 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6709 https://doi.org/10.3390/su14116709 kostenfrei https://doaj.org/article/68349e25762d458b8867a129a67147dc kostenfrei https://www.mdpi.com/2071-1050/14/11/6709 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6709 |
allfieldsGer |
10.3390/su14116709 doi (DE-627)DOAJ042859395 (DE-599)DOAJ68349e25762d458b8867a129a67147dc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yong Wang verfasserin aut Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. multidepot vehicle routing problem with time windows dynamic customer demands resource sharing IMOPSO-DIS algorithm collaborative network Environmental effects of industries and plants Renewable energy sources Environmental sciences Jiayi Zhe verfasserin aut Xiuwen Wang verfasserin aut Yaoyao Sun verfasserin aut Haizhong Wang verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6709 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6709 https://doi.org/10.3390/su14116709 kostenfrei https://doaj.org/article/68349e25762d458b8867a129a67147dc kostenfrei https://www.mdpi.com/2071-1050/14/11/6709 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6709 |
allfieldsSound |
10.3390/su14116709 doi (DE-627)DOAJ042859395 (DE-599)DOAJ68349e25762d458b8867a129a67147dc DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Yong Wang verfasserin aut Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. multidepot vehicle routing problem with time windows dynamic customer demands resource sharing IMOPSO-DIS algorithm collaborative network Environmental effects of industries and plants Renewable energy sources Environmental sciences Jiayi Zhe verfasserin aut Xiuwen Wang verfasserin aut Yaoyao Sun verfasserin aut Haizhong Wang verfasserin aut In Sustainability MDPI AG, 2009 14(2022), 11, p 6709 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:14 year:2022 number:11, p 6709 https://doi.org/10.3390/su14116709 kostenfrei https://doaj.org/article/68349e25762d458b8867a129a67147dc kostenfrei https://www.mdpi.com/2071-1050/14/11/6709 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 11, p 6709 |
language |
English |
source |
In Sustainability 14(2022), 11, p 6709 volume:14 year:2022 number:11, p 6709 |
sourceStr |
In Sustainability 14(2022), 11, p 6709 volume:14 year:2022 number:11, p 6709 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multidepot vehicle routing problem with time windows dynamic customer demands resource sharing IMOPSO-DIS algorithm collaborative network Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Yong Wang @@aut@@ Jiayi Zhe @@aut@@ Xiuwen Wang @@aut@@ Yaoyao Sun @@aut@@ Haizhong Wang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ042859395 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042859395</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414210929.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su14116709</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042859395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68349e25762d458b8867a129a67147dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multidepot vehicle routing problem with time windows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic customer demands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resource sharing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IMOPSO-DIS algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">collaborative network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiayi Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiuwen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoyao Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haizhong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 11, p 6709</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 6709</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su14116709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68349e25762d458b8867a129a67147dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/11/6709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 6709</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yong Wang |
spellingShingle |
Yong Wang misc TD194-195 misc TJ807-830 misc GE1-350 misc multidepot vehicle routing problem with time windows misc dynamic customer demands misc resource sharing misc IMOPSO-DIS algorithm misc collaborative network misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows |
authorStr |
Yong Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows multidepot vehicle routing problem with time windows dynamic customer demands resource sharing IMOPSO-DIS algorithm collaborative network |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc multidepot vehicle routing problem with time windows misc dynamic customer demands misc resource sharing misc IMOPSO-DIS algorithm misc collaborative network misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc multidepot vehicle routing problem with time windows misc dynamic customer demands misc resource sharing misc IMOPSO-DIS algorithm misc collaborative network misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc multidepot vehicle routing problem with time windows misc dynamic customer demands misc resource sharing misc IMOPSO-DIS algorithm misc collaborative network misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows |
ctrlnum |
(DE-627)DOAJ042859395 (DE-599)DOAJ68349e25762d458b8867a129a67147dc |
title_full |
Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows |
author_sort |
Yong Wang |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yong Wang Jiayi Zhe Xiuwen Wang Yaoyao Sun Haizhong Wang |
container_volume |
14 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Yong Wang |
doi_str_mv |
10.3390/su14116709 |
author2-role |
verfasserin |
title_sort |
collaborative multidepot vehicle routing problem with dynamic customer demands and time windows |
callnumber |
TD194-195 |
title_auth |
Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows |
abstract |
Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. |
abstractGer |
Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. |
abstract_unstemmed |
Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 6709 |
title_short |
Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows |
url |
https://doi.org/10.3390/su14116709 https://doaj.org/article/68349e25762d458b8867a129a67147dc https://www.mdpi.com/2071-1050/14/11/6709 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Jiayi Zhe Xiuwen Wang Yaoyao Sun Haizhong Wang |
author2Str |
Jiayi Zhe Xiuwen Wang Yaoyao Sun Haizhong Wang |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su14116709 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T14:24:37.035Z |
_version_ |
1803568207138652160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042859395</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414210929.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su14116709</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042859395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68349e25762d458b8867a129a67147dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic customer demands impose new challenges for vehicle routing optimization with time windows, in which customer demands appear dynamically within the working periods of depots. The delivery routes should be adjusted for the new customer demands as soon as possible when new customer demands emerge. This study investigates a collaborative multidepot vehicle routing problem with dynamic customer demands and time windows (CMVRPDCDTW) by considering resource sharing and dynamic customer demands. Resource sharing of multidepot across multiple service periods can maximize logistics resource utilization and improve the operating efficiency of delivery logistics networks. A bi-objective optimization model is constructed to optimize the vehicle routes while minimizing the total operating cost and number of vehicles. A hybrid algorithm composed of the improved <i<k</i<-medoids clustering algorithm and improved multiobjective particle swarm optimization based on the dynamic insertion strategy (IMOPSO-DIS) algorithm is designed to find near-optimal solutions for the proposed problem. The improved <i<k</i<-medoids clustering algorithm assigns customers to depots in terms of specific distances to obtain the clustering units, whereas the IMOPSO-DIS algorithm optimizes vehicle routes for each clustering unit by updating the external archive. The elite learning strategy and dynamic insertion strategy are applied to maintain the diversity of the swarm and enhance the search ability in the dynamic environment. The experiment results with 26 instances show that the performance of IMOPSO-DIS is superior to the performance of multiobjective particle swarm optimization, nondominated sorting genetic algorithm-II, and multiobjective evolutionary algorithm. A case study in Chongqing City, China is implemented, and the related results are analyzed. This study provides efficient optimization strategies to solve CMVRPDCDTW. The results reveal a 32.5% reduction in total operating costs and savings of 29 delivery vehicles after optimization. It can also improve the intelligence level of the distribution logistics network, promote the sustainable development of urban logistics and transportation systems, and has meaningful implications for enterprises and government to provide theoretical and decision supports in economic and social development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multidepot vehicle routing problem with time windows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic customer demands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resource sharing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IMOPSO-DIS algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">collaborative network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiayi Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiuwen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoyao Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haizhong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 11, p 6709</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 6709</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su14116709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68349e25762d458b8867a129a67147dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/14/11/6709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 6709</subfield></datafield></record></collection>
|
score |
7.39896 |