Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls”
This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity appl...
Ausführliche Beschreibung
Autor*in: |
Rosario V. Giuffrida [verfasserIn] Spasoje Miric [verfasserIn] Johann W. Kolar [verfasserIn] Dominik Bortis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Open Journal of the Industrial Electronics Society - IEEE, 2020, 3(2022), Seite 252-264 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 ; pages:252-264 |
Links: |
---|
DOI / URN: |
10.1109/OJIES.2022.3163014 |
---|
Katalog-ID: |
DOAJ042890837 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ042890837 | ||
003 | DE-627 | ||
005 | 20230308064819.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/OJIES.2022.3163014 |2 doi | |
035 | |a (DE-627)DOAJ042890837 | ||
035 | |a (DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
050 | 0 | |a T55.4-60.8 | |
100 | 0 | |a Rosario V. Giuffrida |e verfasserin |4 aut | |
245 | 1 | 0 | |a Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. | ||
650 | 4 | |a Eddy Currents | |
650 | 4 | |a Magnetic Levitation | |
650 | 4 | |a Position Measurement | |
653 | 0 | |a Electronics | |
653 | 0 | |a Industrial engineering. Management engineering | |
700 | 0 | |a Spasoje Miric |e verfasserin |4 aut | |
700 | 0 | |a Johann W. Kolar |e verfasserin |4 aut | |
700 | 0 | |a Dominik Bortis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Open Journal of the Industrial Electronics Society |d IEEE, 2020 |g 3(2022), Seite 252-264 |w (DE-627)1690051620 |w (DE-600)3008466-0 |x 26441284 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |g pages:252-264 |
856 | 4 | 0 | |u https://doi.org/10.1109/OJIES.2022.3163014 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9755444/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2644-1284 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |h 252-264 |
author_variant |
r v g rvg s m sm j w k jwk d b db |
---|---|
matchkey_str |
article:26441284:2022----::ihyyaiedcretaesaemgeibaigoiinesrmnwttmeauerfcr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/OJIES.2022.3163014 doi (DE-627)DOAJ042890837 (DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe DE-627 ger DE-627 rakwb eng TK7800-8360 T55.4-60.8 Rosario V. Giuffrida verfasserin aut Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. Eddy Currents Magnetic Levitation Position Measurement Electronics Industrial engineering. Management engineering Spasoje Miric verfasserin aut Johann W. Kolar verfasserin aut Dominik Bortis verfasserin aut In IEEE Open Journal of the Industrial Electronics Society IEEE, 2020 3(2022), Seite 252-264 (DE-627)1690051620 (DE-600)3008466-0 26441284 nnns volume:3 year:2022 pages:252-264 https://doi.org/10.1109/OJIES.2022.3163014 kostenfrei https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe kostenfrei https://ieeexplore.ieee.org/document/9755444/ kostenfrei https://doaj.org/toc/2644-1284 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 252-264 |
spelling |
10.1109/OJIES.2022.3163014 doi (DE-627)DOAJ042890837 (DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe DE-627 ger DE-627 rakwb eng TK7800-8360 T55.4-60.8 Rosario V. Giuffrida verfasserin aut Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. Eddy Currents Magnetic Levitation Position Measurement Electronics Industrial engineering. Management engineering Spasoje Miric verfasserin aut Johann W. Kolar verfasserin aut Dominik Bortis verfasserin aut In IEEE Open Journal of the Industrial Electronics Society IEEE, 2020 3(2022), Seite 252-264 (DE-627)1690051620 (DE-600)3008466-0 26441284 nnns volume:3 year:2022 pages:252-264 https://doi.org/10.1109/OJIES.2022.3163014 kostenfrei https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe kostenfrei https://ieeexplore.ieee.org/document/9755444/ kostenfrei https://doaj.org/toc/2644-1284 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 252-264 |
allfields_unstemmed |
10.1109/OJIES.2022.3163014 doi (DE-627)DOAJ042890837 (DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe DE-627 ger DE-627 rakwb eng TK7800-8360 T55.4-60.8 Rosario V. Giuffrida verfasserin aut Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. Eddy Currents Magnetic Levitation Position Measurement Electronics Industrial engineering. Management engineering Spasoje Miric verfasserin aut Johann W. Kolar verfasserin aut Dominik Bortis verfasserin aut In IEEE Open Journal of the Industrial Electronics Society IEEE, 2020 3(2022), Seite 252-264 (DE-627)1690051620 (DE-600)3008466-0 26441284 nnns volume:3 year:2022 pages:252-264 https://doi.org/10.1109/OJIES.2022.3163014 kostenfrei https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe kostenfrei https://ieeexplore.ieee.org/document/9755444/ kostenfrei https://doaj.org/toc/2644-1284 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 252-264 |
allfieldsGer |
10.1109/OJIES.2022.3163014 doi (DE-627)DOAJ042890837 (DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe DE-627 ger DE-627 rakwb eng TK7800-8360 T55.4-60.8 Rosario V. Giuffrida verfasserin aut Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. Eddy Currents Magnetic Levitation Position Measurement Electronics Industrial engineering. Management engineering Spasoje Miric verfasserin aut Johann W. Kolar verfasserin aut Dominik Bortis verfasserin aut In IEEE Open Journal of the Industrial Electronics Society IEEE, 2020 3(2022), Seite 252-264 (DE-627)1690051620 (DE-600)3008466-0 26441284 nnns volume:3 year:2022 pages:252-264 https://doi.org/10.1109/OJIES.2022.3163014 kostenfrei https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe kostenfrei https://ieeexplore.ieee.org/document/9755444/ kostenfrei https://doaj.org/toc/2644-1284 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 252-264 |
allfieldsSound |
10.1109/OJIES.2022.3163014 doi (DE-627)DOAJ042890837 (DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe DE-627 ger DE-627 rakwb eng TK7800-8360 T55.4-60.8 Rosario V. Giuffrida verfasserin aut Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. Eddy Currents Magnetic Levitation Position Measurement Electronics Industrial engineering. Management engineering Spasoje Miric verfasserin aut Johann W. Kolar verfasserin aut Dominik Bortis verfasserin aut In IEEE Open Journal of the Industrial Electronics Society IEEE, 2020 3(2022), Seite 252-264 (DE-627)1690051620 (DE-600)3008466-0 26441284 nnns volume:3 year:2022 pages:252-264 https://doi.org/10.1109/OJIES.2022.3163014 kostenfrei https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe kostenfrei https://ieeexplore.ieee.org/document/9755444/ kostenfrei https://doaj.org/toc/2644-1284 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 252-264 |
language |
English |
source |
In IEEE Open Journal of the Industrial Electronics Society 3(2022), Seite 252-264 volume:3 year:2022 pages:252-264 |
sourceStr |
In IEEE Open Journal of the Industrial Electronics Society 3(2022), Seite 252-264 volume:3 year:2022 pages:252-264 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Eddy Currents Magnetic Levitation Position Measurement Electronics Industrial engineering. Management engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Open Journal of the Industrial Electronics Society |
authorswithroles_txt_mv |
Rosario V. Giuffrida @@aut@@ Spasoje Miric @@aut@@ Johann W. Kolar @@aut@@ Dominik Bortis @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1690051620 |
id |
DOAJ042890837 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042890837</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308064819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJIES.2022.3163014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042890837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rosario V. Giuffrida</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls”</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eddy Currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic Levitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Position Measurement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Spasoje Miric</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dominik Bortis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of the Industrial Electronics Society</subfield><subfield code="d">IEEE, 2020</subfield><subfield code="g">3(2022), Seite 252-264</subfield><subfield code="w">(DE-627)1690051620</subfield><subfield code="w">(DE-600)3008466-0</subfield><subfield code="x">26441284</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:252-264</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJIES.2022.3163014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9755444/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-1284</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="h">252-264</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Rosario V. Giuffrida |
spellingShingle |
Rosario V. Giuffrida misc TK7800-8360 misc T55.4-60.8 misc Eddy Currents misc Magnetic Levitation misc Position Measurement misc Electronics misc Industrial engineering. Management engineering Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” |
authorStr |
Rosario V. Giuffrida |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1690051620 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
26441284 |
topic_title |
TK7800-8360 T55.4-60.8 Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” Eddy Currents Magnetic Levitation Position Measurement |
topic |
misc TK7800-8360 misc T55.4-60.8 misc Eddy Currents misc Magnetic Levitation misc Position Measurement misc Electronics misc Industrial engineering. Management engineering |
topic_unstemmed |
misc TK7800-8360 misc T55.4-60.8 misc Eddy Currents misc Magnetic Levitation misc Position Measurement misc Electronics misc Industrial engineering. Management engineering |
topic_browse |
misc TK7800-8360 misc T55.4-60.8 misc Eddy Currents misc Magnetic Levitation misc Position Measurement misc Electronics misc Industrial engineering. Management engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Open Journal of the Industrial Electronics Society |
hierarchy_parent_id |
1690051620 |
hierarchy_top_title |
IEEE Open Journal of the Industrial Electronics Society |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1690051620 (DE-600)3008466-0 |
title |
Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” |
ctrlnum |
(DE-627)DOAJ042890837 (DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe |
title_full |
Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” |
author_sort |
Rosario V. Giuffrida |
journal |
IEEE Open Journal of the Industrial Electronics Society |
journalStr |
IEEE Open Journal of the Industrial Electronics Society |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
252 |
author_browse |
Rosario V. Giuffrida Spasoje Miric Johann W. Kolar Dominik Bortis |
container_volume |
3 |
class |
TK7800-8360 T55.4-60.8 |
format_se |
Elektronische Aufsätze |
author-letter |
Rosario V. Giuffrida |
doi_str_mv |
10.1109/OJIES.2022.3163014 |
author2-role |
verfasserin |
title_sort |
highly dynamic eddy-current-based sealed magnetic bearing position measurement with temperature drift correction - “seeing through conductive walls” |
callnumber |
TK7800-8360 |
title_auth |
Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” |
abstract |
This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. |
abstractGer |
This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. |
abstract_unstemmed |
This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls” |
url |
https://doi.org/10.1109/OJIES.2022.3163014 https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe https://ieeexplore.ieee.org/document/9755444/ https://doaj.org/toc/2644-1284 |
remote_bool |
true |
author2 |
Spasoje Miric Johann W. Kolar Dominik Bortis |
author2Str |
Spasoje Miric Johann W. Kolar Dominik Bortis |
ppnlink |
1690051620 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/OJIES.2022.3163014 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T14:35:14.303Z |
_version_ |
1803568875363631104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042890837</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308064819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJIES.2022.3163014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042890837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ732cd53d9bdf43558f823b6da735dfbe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rosario V. Giuffrida</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly Dynamic Eddy-Current-Based Sealed Magnetic Bearing Position Measurement With Temperature Drift Correction - “Seeing Through Conductive Walls”</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the design of an Eddy Current Sensor (ECS) for position measurement of a moving conductive target located behind a fixed conductive shielding surface. Such a sensor can e.g. be used in completely sealed actuators with magnetically levitated rotor or mover for high purity applications. Starting from the analysis of the sensor’s operating principle, the design of the excitation coil, the achievable sensitivity and bandwidth as well as the temperature stability of the sensor are investigated. Subsequently, a suitable sensor interface, consisting of the driving and signal conditioning electronics, is selected. With this it is possible to distinguish between position and temperature variations, for which the optimal operational frequencies are identified. The results are finally verified with measurements on a hardware sensor prototype, showing that the ECS can achieve a sensitivity of 1 mV/µm, a position resolution of 1 µm, with a measurement bandwidth of 30 kHz and can hence be used to capture the mover’s position in an active magnetic bearing feedback control structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eddy Currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic Levitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Position Measurement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Spasoje Miric</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dominik Bortis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of the Industrial Electronics Society</subfield><subfield code="d">IEEE, 2020</subfield><subfield code="g">3(2022), Seite 252-264</subfield><subfield code="w">(DE-627)1690051620</subfield><subfield code="w">(DE-600)3008466-0</subfield><subfield code="x">26441284</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:252-264</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJIES.2022.3163014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/732cd53d9bdf43558f823b6da735dfbe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9755444/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-1284</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="h">252-264</subfield></datafield></record></collection>
|
score |
7.40102 |