Research on singular Sturm–Liouville spectral problems with a weighted function
Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of s...
Ausführliche Beschreibung
Autor*in: |
Shuning Tang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Singular Sturm–Liouville problems |
---|
Übergeordnetes Werk: |
In: Boundary Value Problems - SpringerOpen, 2006, (2022), 1, Seite 15 |
---|---|
Übergeordnetes Werk: |
year:2022 ; number:1 ; pages:15 |
Links: |
---|
DOI / URN: |
10.1186/s13661-022-01625-x |
---|
Katalog-ID: |
DOAJ042939755 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ042939755 | ||
003 | DE-627 | ||
005 | 20230502125820.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13661-022-01625-x |2 doi | |
035 | |a (DE-627)DOAJ042939755 | ||
035 | |a (DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Shuning Tang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on singular Sturm–Liouville spectral problems with a weighted function |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. | ||
650 | 4 | |a Singular Sturm–Liouville problems | |
650 | 4 | |a Limiting point and limiting circle | |
650 | 4 | |a Weyl function | |
650 | 4 | |a Weighted function | |
653 | 0 | |a Analysis | |
773 | 0 | 8 | |i In |t Boundary Value Problems |d SpringerOpen, 2006 |g (2022), 1, Seite 15 |w (DE-627)48672557X |w (DE-600)2187777-4 |x 16872770 |7 nnns |
773 | 1 | 8 | |g year:2022 |g number:1 |g pages:15 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13661-022-01625-x |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s13661-022-01625-x |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-2770 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2022 |e 1 |h 15 |
author_variant |
s t st |
---|---|
matchkey_str |
article:16872770:2022----::eerhniglrtrlovlepcrlrbesi |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.1186/s13661-022-01625-x doi (DE-627)DOAJ042939755 (DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45 DE-627 ger DE-627 rakwb eng QA299.6-433 Shuning Tang verfasserin aut Research on singular Sturm–Liouville spectral problems with a weighted function 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. Singular Sturm–Liouville problems Limiting point and limiting circle Weyl function Weighted function Analysis In Boundary Value Problems SpringerOpen, 2006 (2022), 1, Seite 15 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2022 number:1 pages:15 https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45 kostenfrei https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 1 15 |
spelling |
10.1186/s13661-022-01625-x doi (DE-627)DOAJ042939755 (DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45 DE-627 ger DE-627 rakwb eng QA299.6-433 Shuning Tang verfasserin aut Research on singular Sturm–Liouville spectral problems with a weighted function 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. Singular Sturm–Liouville problems Limiting point and limiting circle Weyl function Weighted function Analysis In Boundary Value Problems SpringerOpen, 2006 (2022), 1, Seite 15 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2022 number:1 pages:15 https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45 kostenfrei https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 1 15 |
allfields_unstemmed |
10.1186/s13661-022-01625-x doi (DE-627)DOAJ042939755 (DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45 DE-627 ger DE-627 rakwb eng QA299.6-433 Shuning Tang verfasserin aut Research on singular Sturm–Liouville spectral problems with a weighted function 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. Singular Sturm–Liouville problems Limiting point and limiting circle Weyl function Weighted function Analysis In Boundary Value Problems SpringerOpen, 2006 (2022), 1, Seite 15 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2022 number:1 pages:15 https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45 kostenfrei https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 1 15 |
allfieldsGer |
10.1186/s13661-022-01625-x doi (DE-627)DOAJ042939755 (DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45 DE-627 ger DE-627 rakwb eng QA299.6-433 Shuning Tang verfasserin aut Research on singular Sturm–Liouville spectral problems with a weighted function 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. Singular Sturm–Liouville problems Limiting point and limiting circle Weyl function Weighted function Analysis In Boundary Value Problems SpringerOpen, 2006 (2022), 1, Seite 15 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2022 number:1 pages:15 https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45 kostenfrei https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 1 15 |
allfieldsSound |
10.1186/s13661-022-01625-x doi (DE-627)DOAJ042939755 (DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45 DE-627 ger DE-627 rakwb eng QA299.6-433 Shuning Tang verfasserin aut Research on singular Sturm–Liouville spectral problems with a weighted function 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. Singular Sturm–Liouville problems Limiting point and limiting circle Weyl function Weighted function Analysis In Boundary Value Problems SpringerOpen, 2006 (2022), 1, Seite 15 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2022 number:1 pages:15 https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45 kostenfrei https://doi.org/10.1186/s13661-022-01625-x kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 1 15 |
language |
English |
source |
In Boundary Value Problems (2022), 1, Seite 15 year:2022 number:1 pages:15 |
sourceStr |
In Boundary Value Problems (2022), 1, Seite 15 year:2022 number:1 pages:15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Singular Sturm–Liouville problems Limiting point and limiting circle Weyl function Weighted function Analysis |
isfreeaccess_bool |
true |
container_title |
Boundary Value Problems |
authorswithroles_txt_mv |
Shuning Tang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
48672557X |
id |
DOAJ042939755 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042939755</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502125820.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-022-01625-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042939755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shuning Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on singular Sturm–Liouville spectral problems with a weighted function</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular Sturm–Liouville problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limiting point and limiting circle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2022), 1, Seite 15</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-022-01625-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-022-01625-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Shuning Tang |
spellingShingle |
Shuning Tang misc QA299.6-433 misc Singular Sturm–Liouville problems misc Limiting point and limiting circle misc Weyl function misc Weighted function misc Analysis Research on singular Sturm–Liouville spectral problems with a weighted function |
authorStr |
Shuning Tang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)48672557X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
16872770 |
topic_title |
QA299.6-433 Research on singular Sturm–Liouville spectral problems with a weighted function Singular Sturm–Liouville problems Limiting point and limiting circle Weyl function Weighted function |
topic |
misc QA299.6-433 misc Singular Sturm–Liouville problems misc Limiting point and limiting circle misc Weyl function misc Weighted function misc Analysis |
topic_unstemmed |
misc QA299.6-433 misc Singular Sturm–Liouville problems misc Limiting point and limiting circle misc Weyl function misc Weighted function misc Analysis |
topic_browse |
misc QA299.6-433 misc Singular Sturm–Liouville problems misc Limiting point and limiting circle misc Weyl function misc Weighted function misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Boundary Value Problems |
hierarchy_parent_id |
48672557X |
hierarchy_top_title |
Boundary Value Problems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)48672557X (DE-600)2187777-4 |
title |
Research on singular Sturm–Liouville spectral problems with a weighted function |
ctrlnum |
(DE-627)DOAJ042939755 (DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45 |
title_full |
Research on singular Sturm–Liouville spectral problems with a weighted function |
author_sort |
Shuning Tang |
journal |
Boundary Value Problems |
journalStr |
Boundary Value Problems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Shuning Tang |
class |
QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Shuning Tang |
doi_str_mv |
10.1186/s13661-022-01625-x |
title_sort |
research on singular sturm–liouville spectral problems with a weighted function |
callnumber |
QA299.6-433 |
title_auth |
Research on singular Sturm–Liouville spectral problems with a weighted function |
abstract |
Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. |
abstractGer |
Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. |
abstract_unstemmed |
Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Research on singular Sturm–Liouville spectral problems with a weighted function |
url |
https://doi.org/10.1186/s13661-022-01625-x https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45 https://doaj.org/toc/1687-2770 |
remote_bool |
true |
ppnlink |
48672557X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13661-022-01625-x |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-03T14:50:27.377Z |
_version_ |
1803569832792162304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042939755</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502125820.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-022-01625-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042939755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9d255c56e17846b2bf6517b9d3cb2e45</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shuning Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on singular Sturm–Liouville spectral problems with a weighted function</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As early as 1910, Weyl gave a classification of the singular Sturm–Liouville equation, and divided it into the Limit Point Case and the Limit Circle Case at infinity. This led to the study of singular Sturm–Liouville spectrum theory. With the development of applications, the importance of singular Sturm–Liouville problems with a weighted function becomes more and more significant. This paper focuses on the study of singular Sturm–Liouville problems with a weighted function. Finally, an example of singular Sturm–Liouville problems with a weighted function is given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular Sturm–Liouville problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limiting point and limiting circle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2022), 1, Seite 15</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-022-01625-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9d255c56e17846b2bf6517b9d3cb2e45</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-022-01625-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
score |
7.401598 |