Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand
Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium...
Ausführliche Beschreibung
Autor*in: |
M. Faisi Ikhwali [verfasserIn] Chalermchai Pawattana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Engineering and Applied Science Research - Khon Kaen University, 2017, 49(2022), 4, Seite 470-484 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2022 ; number:4 ; pages:470-484 |
Links: |
---|
Katalog-ID: |
DOAJ042948258 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ042948258 | ||
003 | DE-627 | ||
005 | 20230308065318.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ042948258 | ||
035 | |a (DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T1-995 | |
100 | 0 | |a M. Faisi Ikhwali |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. | ||
650 | 4 | |a climate changes | |
650 | 4 | |a water balance | |
650 | 4 | |a water resources | |
650 | 4 | |a mike she model | |
650 | 4 | |a mike 11 model | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Technology (General) | |
700 | 0 | |a Chalermchai Pawattana |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Engineering and Applied Science Research |d Khon Kaen University, 2017 |g 49(2022), 4, Seite 470-484 |w (DE-627)1760618632 |x 25396218 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2022 |g number:4 |g pages:470-484 |
856 | 4 | 0 | |u https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0 |z kostenfrei |
856 | 4 | 0 | |u https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2539-6161 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2539-6218 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 49 |j 2022 |e 4 |h 470-484 |
author_variant |
m f i mfi c p cp |
---|---|
matchkey_str |
article:25396218:2022----::sesetfyrlgcaitosneciaehnecnrouiguldsrbtdyrlgcl |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
T |
publishDate |
2022 |
allfields |
(DE-627)DOAJ042948258 (DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0 DE-627 ger DE-627 rakwb eng T1-995 M. Faisi Ikhwali verfasserin aut Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. climate changes water balance water resources mike she model mike 11 model Technology T Technology (General) Chalermchai Pawattana verfasserin aut In Engineering and Applied Science Research Khon Kaen University, 2017 49(2022), 4, Seite 470-484 (DE-627)1760618632 25396218 nnns volume:49 year:2022 number:4 pages:470-484 https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0 kostenfrei https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273 kostenfrei https://doaj.org/toc/2539-6161 Journal toc kostenfrei https://doaj.org/toc/2539-6218 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2022 4 470-484 |
spelling |
(DE-627)DOAJ042948258 (DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0 DE-627 ger DE-627 rakwb eng T1-995 M. Faisi Ikhwali verfasserin aut Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. climate changes water balance water resources mike she model mike 11 model Technology T Technology (General) Chalermchai Pawattana verfasserin aut In Engineering and Applied Science Research Khon Kaen University, 2017 49(2022), 4, Seite 470-484 (DE-627)1760618632 25396218 nnns volume:49 year:2022 number:4 pages:470-484 https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0 kostenfrei https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273 kostenfrei https://doaj.org/toc/2539-6161 Journal toc kostenfrei https://doaj.org/toc/2539-6218 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2022 4 470-484 |
allfields_unstemmed |
(DE-627)DOAJ042948258 (DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0 DE-627 ger DE-627 rakwb eng T1-995 M. Faisi Ikhwali verfasserin aut Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. climate changes water balance water resources mike she model mike 11 model Technology T Technology (General) Chalermchai Pawattana verfasserin aut In Engineering and Applied Science Research Khon Kaen University, 2017 49(2022), 4, Seite 470-484 (DE-627)1760618632 25396218 nnns volume:49 year:2022 number:4 pages:470-484 https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0 kostenfrei https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273 kostenfrei https://doaj.org/toc/2539-6161 Journal toc kostenfrei https://doaj.org/toc/2539-6218 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2022 4 470-484 |
allfieldsGer |
(DE-627)DOAJ042948258 (DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0 DE-627 ger DE-627 rakwb eng T1-995 M. Faisi Ikhwali verfasserin aut Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. climate changes water balance water resources mike she model mike 11 model Technology T Technology (General) Chalermchai Pawattana verfasserin aut In Engineering and Applied Science Research Khon Kaen University, 2017 49(2022), 4, Seite 470-484 (DE-627)1760618632 25396218 nnns volume:49 year:2022 number:4 pages:470-484 https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0 kostenfrei https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273 kostenfrei https://doaj.org/toc/2539-6161 Journal toc kostenfrei https://doaj.org/toc/2539-6218 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2022 4 470-484 |
allfieldsSound |
(DE-627)DOAJ042948258 (DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0 DE-627 ger DE-627 rakwb eng T1-995 M. Faisi Ikhwali verfasserin aut Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. climate changes water balance water resources mike she model mike 11 model Technology T Technology (General) Chalermchai Pawattana verfasserin aut In Engineering and Applied Science Research Khon Kaen University, 2017 49(2022), 4, Seite 470-484 (DE-627)1760618632 25396218 nnns volume:49 year:2022 number:4 pages:470-484 https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0 kostenfrei https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273 kostenfrei https://doaj.org/toc/2539-6161 Journal toc kostenfrei https://doaj.org/toc/2539-6218 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2022 4 470-484 |
language |
English |
source |
In Engineering and Applied Science Research 49(2022), 4, Seite 470-484 volume:49 year:2022 number:4 pages:470-484 |
sourceStr |
In Engineering and Applied Science Research 49(2022), 4, Seite 470-484 volume:49 year:2022 number:4 pages:470-484 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
climate changes water balance water resources mike she model mike 11 model Technology T Technology (General) |
isfreeaccess_bool |
true |
container_title |
Engineering and Applied Science Research |
authorswithroles_txt_mv |
M. Faisi Ikhwali @@aut@@ Chalermchai Pawattana @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1760618632 |
id |
DOAJ042948258 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042948258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308065318.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042948258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Faisi Ikhwali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate changes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mike she model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mike 11 model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chalermchai Pawattana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Engineering and Applied Science Research</subfield><subfield code="d">Khon Kaen University, 2017</subfield><subfield code="g">49(2022), 4, Seite 470-484</subfield><subfield code="w">(DE-627)1760618632</subfield><subfield code="x">25396218</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:470-484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2539-6161</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2539-6218</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">470-484</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
M. Faisi Ikhwali |
spellingShingle |
M. Faisi Ikhwali misc T1-995 misc climate changes misc water balance misc water resources misc mike she model misc mike 11 model misc Technology misc T misc Technology (General) Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand |
authorStr |
M. Faisi Ikhwali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760618632 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T1-995 |
illustrated |
Not Illustrated |
issn |
25396218 |
topic_title |
T1-995 Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand climate changes water balance water resources mike she model mike 11 model |
topic |
misc T1-995 misc climate changes misc water balance misc water resources misc mike she model misc mike 11 model misc Technology misc T misc Technology (General) |
topic_unstemmed |
misc T1-995 misc climate changes misc water balance misc water resources misc mike she model misc mike 11 model misc Technology misc T misc Technology (General) |
topic_browse |
misc T1-995 misc climate changes misc water balance misc water resources misc mike she model misc mike 11 model misc Technology misc T misc Technology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering and Applied Science Research |
hierarchy_parent_id |
1760618632 |
hierarchy_top_title |
Engineering and Applied Science Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760618632 |
title |
Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand |
ctrlnum |
(DE-627)DOAJ042948258 (DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0 |
title_full |
Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand |
author_sort |
M. Faisi Ikhwali |
journal |
Engineering and Applied Science Research |
journalStr |
Engineering and Applied Science Research |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
470 |
author_browse |
M. Faisi Ikhwali Chalermchai Pawattana |
container_volume |
49 |
class |
T1-995 |
format_se |
Elektronische Aufsätze |
author-letter |
M. Faisi Ikhwali |
author2-role |
verfasserin |
title_sort |
assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in huai luang watershed, thailand |
callnumber |
T1-995 |
title_auth |
Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand |
abstract |
Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. |
abstractGer |
Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. |
abstract_unstemmed |
Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand |
url |
https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0 https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273 https://doaj.org/toc/2539-6161 https://doaj.org/toc/2539-6218 |
remote_bool |
true |
author2 |
Chalermchai Pawattana |
author2Str |
Chalermchai Pawattana |
ppnlink |
1760618632 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
T1-995 |
up_date |
2024-07-03T14:53:04.482Z |
_version_ |
1803569997524500480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ042948258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308065318.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ042948258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf2e1d71f05514ac2b86136845070b4b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Faisi Ikhwali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Huai Luang Watershed is mostly covered by agriculture area and the most population work on farm. The water is an essential factor to support communities in the watershed. Recently in Huai Luang watershed has faced serious problems on water resources such as drought and flood event. Water is a medium that is very vulnerable to the impact of climate changes. Therefore, the objective of the research was to evaluate the effect of climate changes on hydrologic variation in Huai Luang Watershed. This research utilized MIKE SHE for fully distributed hydrological model and coupled with MIKE 11 to model water cycle in watershed. This study used observed streamflow data from Kh.103 station for calibration and validation model. The models were calibrated from the period of 1 January 2004 to 31 December 2006 and validated 1 January 2011 to 31 December 2013. The calibration and validation results indicated agreement between observed and simulated data. The R2, NSE, PBIAS, and RSR values of calibration of daily streamflow were 0.60, 0.53, 5.34, and 0.69 respectively. Meanwhile validation period resulted better performance (R2 = 0.70, NSE = 0.68, PBIAS = -4.13, and RSR = 0.57) than calibration. After Model was developed, then the impacts of climate changes on the watershed response were evaluated using MIKE SHE Model in order to determine the quantities of water resources in 30 years past (1986-2015) and 30 years (2021-2050) later. Eventually, the results showed that the annual actual evapotranspiration has decreased significantly. The increase of overland flow quantity in future projection was tied by the decrease of actual evapotranspiration. Meanwhile, water in unsaturated and saturated zone of historic and future period were not significant changes. It can be safely said that climate changes in watershed do not significantly influence water resources in unsaturated and saturated zone.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate changes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mike she model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mike 11 model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chalermchai Pawattana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Engineering and Applied Science Research</subfield><subfield code="d">Khon Kaen University, 2017</subfield><subfield code="g">49(2022), 4, Seite 470-484</subfield><subfield code="w">(DE-627)1760618632</subfield><subfield code="x">25396218</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:470-484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f2e1d71f05514ac2b86136845070b4b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ph01.tci-thaijo.org/index.php/easr/article/view/245157/168273</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2539-6161</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2539-6218</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">470-484</subfield></datafield></record></collection>
|
score |
7.401971 |