Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides
Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of...
Ausführliche Beschreibung
Autor*in: |
Francis J. Osonga [verfasserIn] Ali Akgul [verfasserIn] Idris Yazgan [verfasserIn] Ayfer Akgul [verfasserIn] Gaddi B. Eshun [verfasserIn] Laura Sakhaee [verfasserIn] Omowunmi A. Sadik [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Molecules - MDPI AG, 2003, 25(2020), 11, p 2682 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2020 ; number:11, p 2682 |
Links: |
---|
DOI / URN: |
10.3390/molecules25112682 |
---|
Katalog-ID: |
DOAJ04344539X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04344539X | ||
003 | DE-627 | ||
005 | 20240412232016.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/molecules25112682 |2 doi | |
035 | |a (DE-627)DOAJ04344539X | ||
035 | |a (DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Francis J. Osonga |e verfasserin |4 aut | |
245 | 1 | 0 | |a Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. | ||
650 | 4 | |a luteolin | |
650 | 4 | |a silver nanoparticles | |
650 | 4 | |a luteolin tetraphosphate | |
650 | 4 | |a gold nanoparticles | |
650 | 4 | |a antimicrobial | |
650 | 4 | |a remediation | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Ali Akgul |e verfasserin |4 aut | |
700 | 0 | |a Idris Yazgan |e verfasserin |4 aut | |
700 | 0 | |a Ayfer Akgul |e verfasserin |4 aut | |
700 | 0 | |a Gaddi B. Eshun |e verfasserin |4 aut | |
700 | 0 | |a Laura Sakhaee |e verfasserin |4 aut | |
700 | 0 | |a Omowunmi A. Sadik |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Molecules |d MDPI AG, 2003 |g 25(2020), 11, p 2682 |w (DE-627)311313132 |w (DE-600)2008644-1 |x 14203049 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2020 |g number:11, p 2682 |
856 | 4 | 0 | |u https://doi.org/10.3390/molecules25112682 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1420-3049/25/11/2682 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1420-3049 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2020 |e 11, p 2682 |
author_variant |
f j o fjo a a aa i y iy a a aa g b e gbe l s ls o a s oas |
---|---|
matchkey_str |
article:14203049:2020----::iensaeeednatmcoilciiisfivrnglnnprilsmdl |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QD |
publishDate |
2020 |
allfields |
10.3390/molecules25112682 doi (DE-627)DOAJ04344539X (DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52 DE-627 ger DE-627 rakwb eng QD241-441 Francis J. Osonga verfasserin aut Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. luteolin silver nanoparticles luteolin tetraphosphate gold nanoparticles antimicrobial remediation Organic chemistry Ali Akgul verfasserin aut Idris Yazgan verfasserin aut Ayfer Akgul verfasserin aut Gaddi B. Eshun verfasserin aut Laura Sakhaee verfasserin aut Omowunmi A. Sadik verfasserin aut In Molecules MDPI AG, 2003 25(2020), 11, p 2682 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:11, p 2682 https://doi.org/10.3390/molecules25112682 kostenfrei https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52 kostenfrei https://www.mdpi.com/1420-3049/25/11/2682 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 11, p 2682 |
spelling |
10.3390/molecules25112682 doi (DE-627)DOAJ04344539X (DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52 DE-627 ger DE-627 rakwb eng QD241-441 Francis J. Osonga verfasserin aut Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. luteolin silver nanoparticles luteolin tetraphosphate gold nanoparticles antimicrobial remediation Organic chemistry Ali Akgul verfasserin aut Idris Yazgan verfasserin aut Ayfer Akgul verfasserin aut Gaddi B. Eshun verfasserin aut Laura Sakhaee verfasserin aut Omowunmi A. Sadik verfasserin aut In Molecules MDPI AG, 2003 25(2020), 11, p 2682 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:11, p 2682 https://doi.org/10.3390/molecules25112682 kostenfrei https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52 kostenfrei https://www.mdpi.com/1420-3049/25/11/2682 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 11, p 2682 |
allfields_unstemmed |
10.3390/molecules25112682 doi (DE-627)DOAJ04344539X (DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52 DE-627 ger DE-627 rakwb eng QD241-441 Francis J. Osonga verfasserin aut Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. luteolin silver nanoparticles luteolin tetraphosphate gold nanoparticles antimicrobial remediation Organic chemistry Ali Akgul verfasserin aut Idris Yazgan verfasserin aut Ayfer Akgul verfasserin aut Gaddi B. Eshun verfasserin aut Laura Sakhaee verfasserin aut Omowunmi A. Sadik verfasserin aut In Molecules MDPI AG, 2003 25(2020), 11, p 2682 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:11, p 2682 https://doi.org/10.3390/molecules25112682 kostenfrei https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52 kostenfrei https://www.mdpi.com/1420-3049/25/11/2682 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 11, p 2682 |
allfieldsGer |
10.3390/molecules25112682 doi (DE-627)DOAJ04344539X (DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52 DE-627 ger DE-627 rakwb eng QD241-441 Francis J. Osonga verfasserin aut Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. luteolin silver nanoparticles luteolin tetraphosphate gold nanoparticles antimicrobial remediation Organic chemistry Ali Akgul verfasserin aut Idris Yazgan verfasserin aut Ayfer Akgul verfasserin aut Gaddi B. Eshun verfasserin aut Laura Sakhaee verfasserin aut Omowunmi A. Sadik verfasserin aut In Molecules MDPI AG, 2003 25(2020), 11, p 2682 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:11, p 2682 https://doi.org/10.3390/molecules25112682 kostenfrei https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52 kostenfrei https://www.mdpi.com/1420-3049/25/11/2682 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 11, p 2682 |
allfieldsSound |
10.3390/molecules25112682 doi (DE-627)DOAJ04344539X (DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52 DE-627 ger DE-627 rakwb eng QD241-441 Francis J. Osonga verfasserin aut Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. luteolin silver nanoparticles luteolin tetraphosphate gold nanoparticles antimicrobial remediation Organic chemistry Ali Akgul verfasserin aut Idris Yazgan verfasserin aut Ayfer Akgul verfasserin aut Gaddi B. Eshun verfasserin aut Laura Sakhaee verfasserin aut Omowunmi A. Sadik verfasserin aut In Molecules MDPI AG, 2003 25(2020), 11, p 2682 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:11, p 2682 https://doi.org/10.3390/molecules25112682 kostenfrei https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52 kostenfrei https://www.mdpi.com/1420-3049/25/11/2682 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 11, p 2682 |
language |
English |
source |
In Molecules 25(2020), 11, p 2682 volume:25 year:2020 number:11, p 2682 |
sourceStr |
In Molecules 25(2020), 11, p 2682 volume:25 year:2020 number:11, p 2682 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
luteolin silver nanoparticles luteolin tetraphosphate gold nanoparticles antimicrobial remediation Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Molecules |
authorswithroles_txt_mv |
Francis J. Osonga @@aut@@ Ali Akgul @@aut@@ Idris Yazgan @@aut@@ Ayfer Akgul @@aut@@ Gaddi B. Eshun @@aut@@ Laura Sakhaee @@aut@@ Omowunmi A. Sadik @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
311313132 |
id |
DOAJ04344539X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04344539X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412232016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules25112682</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04344539X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Francis J. Osonga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">luteolin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silver nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">luteolin tetraphosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gold nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimicrobial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remediation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Akgul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idris Yazgan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayfer Akgul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gaddi B. Eshun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Sakhaee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Omowunmi A. Sadik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2020), 11, p 2682</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11, p 2682</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules25112682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/25/11/2682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">11, p 2682</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Francis J. Osonga |
spellingShingle |
Francis J. Osonga misc QD241-441 misc luteolin misc silver nanoparticles misc luteolin tetraphosphate misc gold nanoparticles misc antimicrobial misc remediation misc Organic chemistry Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides |
authorStr |
Francis J. Osonga |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)311313132 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
14203049 |
topic_title |
QD241-441 Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides luteolin silver nanoparticles luteolin tetraphosphate gold nanoparticles antimicrobial remediation |
topic |
misc QD241-441 misc luteolin misc silver nanoparticles misc luteolin tetraphosphate misc gold nanoparticles misc antimicrobial misc remediation misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc luteolin misc silver nanoparticles misc luteolin tetraphosphate misc gold nanoparticles misc antimicrobial misc remediation misc Organic chemistry |
topic_browse |
misc QD241-441 misc luteolin misc silver nanoparticles misc luteolin tetraphosphate misc gold nanoparticles misc antimicrobial misc remediation misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecules |
hierarchy_parent_id |
311313132 |
hierarchy_top_title |
Molecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)311313132 (DE-600)2008644-1 |
title |
Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides |
ctrlnum |
(DE-627)DOAJ04344539X (DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52 |
title_full |
Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides |
author_sort |
Francis J. Osonga |
journal |
Molecules |
journalStr |
Molecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Francis J. Osonga Ali Akgul Idris Yazgan Ayfer Akgul Gaddi B. Eshun Laura Sakhaee Omowunmi A. Sadik |
container_volume |
25 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Francis J. Osonga |
doi_str_mv |
10.3390/molecules25112682 |
author2-role |
verfasserin |
title_sort |
size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides |
callnumber |
QD241-441 |
title_auth |
Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides |
abstract |
Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. |
abstractGer |
Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. |
abstract_unstemmed |
Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 2682 |
title_short |
Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides |
url |
https://doi.org/10.3390/molecules25112682 https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52 https://www.mdpi.com/1420-3049/25/11/2682 https://doaj.org/toc/1420-3049 |
remote_bool |
true |
author2 |
Ali Akgul Idris Yazgan Ayfer Akgul Gaddi B. Eshun Laura Sakhaee Omowunmi A. Sadik |
author2Str |
Ali Akgul Idris Yazgan Ayfer Akgul Gaddi B. Eshun Laura Sakhaee Omowunmi A. Sadik |
ppnlink |
311313132 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/molecules25112682 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T17:36:22.970Z |
_version_ |
1803580271984902145 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04344539X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412232016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules25112682</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04344539X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf1ca875a62e84fd7ada4c7dc74438f52</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Francis J. Osonga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: <i<Aspergillus nidulans</i<, <i<Trichaptum biforme, Penicillium italicum, Fusarium oxysporum,</i< and <i<Colletotrichum gloeosporioides,</i< while the class of bacteria employed include <i<Pseudomonas aeruginosa</i<, <i<Aeromonas hydrophila</i<, <i<Escherichia coli,</i< and <i<Citrobacter freundii</i< as Gram (−) bacteria, and <i<Listeria monocytogenes and Staphylococcus epidermidis</i< as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of <i<A. nidulans</i< growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">luteolin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silver nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">luteolin tetraphosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gold nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimicrobial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remediation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Akgul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Idris Yazgan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayfer Akgul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gaddi B. Eshun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Sakhaee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Omowunmi A. Sadik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2020), 11, p 2682</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11, p 2682</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules25112682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f1ca875a62e84fd7ada4c7dc74438f52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/25/11/2682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">11, p 2682</subfield></datafield></record></collection>
|
score |
7.3985004 |