Heat transient processes identification of the elements of internal environment system
Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-pa...
Ausführliche Beschreibung
Autor*in: |
Rustam Sh. Mansurov [verfasserIn] Yuri E. Voskoboinikov [verfasserIn] Vasilisa A. Boeva [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Vestnik MGSU - Moscow State University of Civil Engineering (MGSU), 2013, 17(2022), 2, Seite 222-231 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2022 ; number:2 ; pages:222-231 |
Links: |
---|
DOI / URN: |
10.22227/1997-0935.2022.2.222-231 |
---|
Katalog-ID: |
DOAJ043460763 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ043460763 | ||
003 | DE-627 | ||
005 | 20230308072221.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.22227/1997-0935.2022.2.222-231 |2 doi | |
035 | |a (DE-627)DOAJ043460763 | ||
035 | |a (DE-599)DOAJcc49ff2cf0364347ab04aee76c680704 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus | ||
050 | 0 | |a NA1-9428 | |
050 | 0 | |a HD9715-9717.5 | |
100 | 0 | |a Rustam Sh. Mansurov |e verfasserin |4 aut | |
245 | 1 | 0 | |a Heat transient processes identification of the elements of internal environment system |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. | ||
650 | 4 | |a climate system | |
650 | 4 | |a transient process | |
650 | 4 | |a relative excess heat | |
650 | 4 | |a non-parametric identification problem | |
650 | 4 | |a volterra integral equation of the 2nd kind | |
650 | 4 | |a stable identification algorithm | |
650 | 4 | |a smoothing cubic splines | |
650 | 4 | |a combined boundary conditions | |
650 | 4 | |a optimal smoothing parameter estimation when the measurement noise variance is undefined | |
653 | 0 | |a Architecture | |
653 | 0 | |a Construction industry | |
700 | 0 | |a Yuri E. Voskoboinikov |e verfasserin |4 aut | |
700 | 0 | |a Vasilisa A. Boeva |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Vestnik MGSU |d Moscow State University of Civil Engineering (MGSU), 2013 |g 17(2022), 2, Seite 222-231 |w (DE-627)792409914 |w (DE-600)2781261-3 |x 23046600 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2022 |g number:2 |g pages:222-231 |
856 | 4 | 0 | |u https://doi.org/10.22227/1997-0935.2022.2.222-231 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.22227/1997-0935.2022.2.222-231 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1997-0935 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2022 |e 2 |h 222-231 |
author_variant |
r s m rsm y e v yev v a b vab |
---|---|
matchkey_str |
article:23046600:2022----::etrninpoessdniiainfheeetoitr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
NA |
publishDate |
2022 |
allfields |
10.22227/1997-0935.2022.2.222-231 doi (DE-627)DOAJ043460763 (DE-599)DOAJcc49ff2cf0364347ab04aee76c680704 DE-627 ger DE-627 rakwb eng rus NA1-9428 HD9715-9717.5 Rustam Sh. Mansurov verfasserin aut Heat transient processes identification of the elements of internal environment system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. climate system transient process relative excess heat non-parametric identification problem volterra integral equation of the 2nd kind stable identification algorithm smoothing cubic splines combined boundary conditions optimal smoothing parameter estimation when the measurement noise variance is undefined Architecture Construction industry Yuri E. Voskoboinikov verfasserin aut Vasilisa A. Boeva verfasserin aut In Vestnik MGSU Moscow State University of Civil Engineering (MGSU), 2013 17(2022), 2, Seite 222-231 (DE-627)792409914 (DE-600)2781261-3 23046600 nnns volume:17 year:2022 number:2 pages:222-231 https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704 kostenfrei https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/toc/1997-0935 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 17 2022 2 222-231 |
spelling |
10.22227/1997-0935.2022.2.222-231 doi (DE-627)DOAJ043460763 (DE-599)DOAJcc49ff2cf0364347ab04aee76c680704 DE-627 ger DE-627 rakwb eng rus NA1-9428 HD9715-9717.5 Rustam Sh. Mansurov verfasserin aut Heat transient processes identification of the elements of internal environment system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. climate system transient process relative excess heat non-parametric identification problem volterra integral equation of the 2nd kind stable identification algorithm smoothing cubic splines combined boundary conditions optimal smoothing parameter estimation when the measurement noise variance is undefined Architecture Construction industry Yuri E. Voskoboinikov verfasserin aut Vasilisa A. Boeva verfasserin aut In Vestnik MGSU Moscow State University of Civil Engineering (MGSU), 2013 17(2022), 2, Seite 222-231 (DE-627)792409914 (DE-600)2781261-3 23046600 nnns volume:17 year:2022 number:2 pages:222-231 https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704 kostenfrei https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/toc/1997-0935 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 17 2022 2 222-231 |
allfields_unstemmed |
10.22227/1997-0935.2022.2.222-231 doi (DE-627)DOAJ043460763 (DE-599)DOAJcc49ff2cf0364347ab04aee76c680704 DE-627 ger DE-627 rakwb eng rus NA1-9428 HD9715-9717.5 Rustam Sh. Mansurov verfasserin aut Heat transient processes identification of the elements of internal environment system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. climate system transient process relative excess heat non-parametric identification problem volterra integral equation of the 2nd kind stable identification algorithm smoothing cubic splines combined boundary conditions optimal smoothing parameter estimation when the measurement noise variance is undefined Architecture Construction industry Yuri E. Voskoboinikov verfasserin aut Vasilisa A. Boeva verfasserin aut In Vestnik MGSU Moscow State University of Civil Engineering (MGSU), 2013 17(2022), 2, Seite 222-231 (DE-627)792409914 (DE-600)2781261-3 23046600 nnns volume:17 year:2022 number:2 pages:222-231 https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704 kostenfrei https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/toc/1997-0935 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 17 2022 2 222-231 |
allfieldsGer |
10.22227/1997-0935.2022.2.222-231 doi (DE-627)DOAJ043460763 (DE-599)DOAJcc49ff2cf0364347ab04aee76c680704 DE-627 ger DE-627 rakwb eng rus NA1-9428 HD9715-9717.5 Rustam Sh. Mansurov verfasserin aut Heat transient processes identification of the elements of internal environment system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. climate system transient process relative excess heat non-parametric identification problem volterra integral equation of the 2nd kind stable identification algorithm smoothing cubic splines combined boundary conditions optimal smoothing parameter estimation when the measurement noise variance is undefined Architecture Construction industry Yuri E. Voskoboinikov verfasserin aut Vasilisa A. Boeva verfasserin aut In Vestnik MGSU Moscow State University of Civil Engineering (MGSU), 2013 17(2022), 2, Seite 222-231 (DE-627)792409914 (DE-600)2781261-3 23046600 nnns volume:17 year:2022 number:2 pages:222-231 https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704 kostenfrei https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/toc/1997-0935 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 17 2022 2 222-231 |
allfieldsSound |
10.22227/1997-0935.2022.2.222-231 doi (DE-627)DOAJ043460763 (DE-599)DOAJcc49ff2cf0364347ab04aee76c680704 DE-627 ger DE-627 rakwb eng rus NA1-9428 HD9715-9717.5 Rustam Sh. Mansurov verfasserin aut Heat transient processes identification of the elements of internal environment system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. climate system transient process relative excess heat non-parametric identification problem volterra integral equation of the 2nd kind stable identification algorithm smoothing cubic splines combined boundary conditions optimal smoothing parameter estimation when the measurement noise variance is undefined Architecture Construction industry Yuri E. Voskoboinikov verfasserin aut Vasilisa A. Boeva verfasserin aut In Vestnik MGSU Moscow State University of Civil Engineering (MGSU), 2013 17(2022), 2, Seite 222-231 (DE-627)792409914 (DE-600)2781261-3 23046600 nnns volume:17 year:2022 number:2 pages:222-231 https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704 kostenfrei https://doi.org/10.22227/1997-0935.2022.2.222-231 kostenfrei https://doaj.org/toc/1997-0935 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 17 2022 2 222-231 |
language |
English Russian |
source |
In Vestnik MGSU 17(2022), 2, Seite 222-231 volume:17 year:2022 number:2 pages:222-231 |
sourceStr |
In Vestnik MGSU 17(2022), 2, Seite 222-231 volume:17 year:2022 number:2 pages:222-231 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
climate system transient process relative excess heat non-parametric identification problem volterra integral equation of the 2nd kind stable identification algorithm smoothing cubic splines combined boundary conditions optimal smoothing parameter estimation when the measurement noise variance is undefined Architecture Construction industry |
isfreeaccess_bool |
true |
container_title |
Vestnik MGSU |
authorswithroles_txt_mv |
Rustam Sh. Mansurov @@aut@@ Yuri E. Voskoboinikov @@aut@@ Vasilisa A. Boeva @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
792409914 |
id |
DOAJ043460763 |
language_de |
englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ043460763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308072221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22227/1997-0935.2022.2.222-231</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ043460763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc49ff2cf0364347ab04aee76c680704</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">NA1-9428</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD9715-9717.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rustam Sh. Mansurov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transient processes identification of the elements of internal environment system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transient process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relative excess heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-parametric identification problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volterra integral equation of the 2nd kind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stable identification algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smoothing cubic splines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">combined boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal smoothing parameter estimation when the measurement noise variance is undefined</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Architecture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Construction industry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuri E. Voskoboinikov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vasilisa A. Boeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Vestnik MGSU</subfield><subfield code="d">Moscow State University of Civil Engineering (MGSU), 2013</subfield><subfield code="g">17(2022), 2, Seite 222-231</subfield><subfield code="w">(DE-627)792409914</subfield><subfield code="w">(DE-600)2781261-3</subfield><subfield code="x">23046600</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:222-231</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22227/1997-0935.2022.2.222-231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22227/1997-0935.2022.2.222-231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1997-0935</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">222-231</subfield></datafield></record></collection>
|
callnumber-first |
N - Fine Arts |
author |
Rustam Sh. Mansurov |
spellingShingle |
Rustam Sh. Mansurov misc NA1-9428 misc HD9715-9717.5 misc climate system misc transient process misc relative excess heat misc non-parametric identification problem misc volterra integral equation of the 2nd kind misc stable identification algorithm misc smoothing cubic splines misc combined boundary conditions misc optimal smoothing parameter estimation when the measurement noise variance is undefined misc Architecture misc Construction industry Heat transient processes identification of the elements of internal environment system |
authorStr |
Rustam Sh. Mansurov |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)792409914 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
NA1-9428 |
illustrated |
Not Illustrated |
issn |
23046600 |
topic_title |
NA1-9428 HD9715-9717.5 Heat transient processes identification of the elements of internal environment system climate system transient process relative excess heat non-parametric identification problem volterra integral equation of the 2nd kind stable identification algorithm smoothing cubic splines combined boundary conditions optimal smoothing parameter estimation when the measurement noise variance is undefined |
topic |
misc NA1-9428 misc HD9715-9717.5 misc climate system misc transient process misc relative excess heat misc non-parametric identification problem misc volterra integral equation of the 2nd kind misc stable identification algorithm misc smoothing cubic splines misc combined boundary conditions misc optimal smoothing parameter estimation when the measurement noise variance is undefined misc Architecture misc Construction industry |
topic_unstemmed |
misc NA1-9428 misc HD9715-9717.5 misc climate system misc transient process misc relative excess heat misc non-parametric identification problem misc volterra integral equation of the 2nd kind misc stable identification algorithm misc smoothing cubic splines misc combined boundary conditions misc optimal smoothing parameter estimation when the measurement noise variance is undefined misc Architecture misc Construction industry |
topic_browse |
misc NA1-9428 misc HD9715-9717.5 misc climate system misc transient process misc relative excess heat misc non-parametric identification problem misc volterra integral equation of the 2nd kind misc stable identification algorithm misc smoothing cubic splines misc combined boundary conditions misc optimal smoothing parameter estimation when the measurement noise variance is undefined misc Architecture misc Construction industry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Vestnik MGSU |
hierarchy_parent_id |
792409914 |
hierarchy_top_title |
Vestnik MGSU |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)792409914 (DE-600)2781261-3 |
title |
Heat transient processes identification of the elements of internal environment system |
ctrlnum |
(DE-627)DOAJ043460763 (DE-599)DOAJcc49ff2cf0364347ab04aee76c680704 |
title_full |
Heat transient processes identification of the elements of internal environment system |
author_sort |
Rustam Sh. Mansurov |
journal |
Vestnik MGSU |
journalStr |
Vestnik MGSU |
callnumber-first-code |
N |
lang_code |
eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
222 |
author_browse |
Rustam Sh. Mansurov Yuri E. Voskoboinikov Vasilisa A. Boeva |
container_volume |
17 |
class |
NA1-9428 HD9715-9717.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Rustam Sh. Mansurov |
doi_str_mv |
10.22227/1997-0935.2022.2.222-231 |
author2-role |
verfasserin |
title_sort |
heat transient processes identification of the elements of internal environment system |
callnumber |
NA1-9428 |
title_auth |
Heat transient processes identification of the elements of internal environment system |
abstract |
Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. |
abstractGer |
Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. |
abstract_unstemmed |
Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Heat transient processes identification of the elements of internal environment system |
url |
https://doi.org/10.22227/1997-0935.2022.2.222-231 https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704 https://doaj.org/toc/1997-0935 |
remote_bool |
true |
author2 |
Yuri E. Voskoboinikov Vasilisa A. Boeva |
author2Str |
Yuri E. Voskoboinikov Vasilisa A. Boeva |
ppnlink |
792409914 |
callnumber-subject |
NA - Architecture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.22227/1997-0935.2022.2.222-231 |
callnumber-a |
NA1-9428 |
up_date |
2024-07-03T17:41:27.511Z |
_version_ |
1803580591328722944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ043460763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308072221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22227/1997-0935.2022.2.222-231</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ043460763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc49ff2cf0364347ab04aee76c680704</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">NA1-9428</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD9715-9717.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rustam Sh. Mansurov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transient processes identification of the elements of internal environment system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction. The study of heat exchange transients in the climate system “Heater-Ventilator-Room”, when ventilator capacity varies step-wise, is presented. The construction of functional relations between inputs and outputs of the system is the object of special attention. This allows for a non-parametric identification of impulse responses in the system for simulation and control. Materials and methods. The climate system is represented by a combination of several different-type elements with step inputs and experimental data as outputs. Mathematical models of the elements are governed by Volterra integral equation of the 2nd kind. Solution of this equation is an ill-posed problem, and specifics of identification experiments do not allow applying computational methods of classical regularization algorithms. A non-parametric identification of impulse responses for the elements is performed by the authors’ stable algorithm with due regard for real technical systems specifics. The algorithm is founded on stable differentiation by smoothing cubic splines with optimal smoothing parameter estimation and special type boundary conditions. Results. Non-parametric identification algorithm is adapted for the investigated climate system. The inverse problems of impulse responses identification and the direct problems of heat flux reactions prediction are solved. A high convergence of theoretical and experimental data is shown. Conclusions. The behavior of the transients is predictable for the climate system under the particular operation mode. The algorithm proposed takes proper account of practical problems specifics. The results obtained suggest the efficiency of the algorithm for applied identification problems solutions in real complex technical systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transient process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relative excess heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-parametric identification problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volterra integral equation of the 2nd kind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stable identification algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smoothing cubic splines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">combined boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal smoothing parameter estimation when the measurement noise variance is undefined</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Architecture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Construction industry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuri E. Voskoboinikov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vasilisa A. Boeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Vestnik MGSU</subfield><subfield code="d">Moscow State University of Civil Engineering (MGSU), 2013</subfield><subfield code="g">17(2022), 2, Seite 222-231</subfield><subfield code="w">(DE-627)792409914</subfield><subfield code="w">(DE-600)2781261-3</subfield><subfield code="x">23046600</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:222-231</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22227/1997-0935.2022.2.222-231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc49ff2cf0364347ab04aee76c680704</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22227/1997-0935.2022.2.222-231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1997-0935</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">222-231</subfield></datafield></record></collection>
|
score |
7.398464 |