On the GI/M/1 Queue with Vacations and Multiple Service Phases
This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the s...
Ausführliche Beschreibung
Autor*in: |
Jianjun Li [verfasserIn] Liwei Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Übergeordnetes Werk: |
In: Mathematical Problems in Engineering - Hindawi Limited, 2002, (2017) |
---|---|
Übergeordnetes Werk: |
year:2017 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2017/3246934 |
---|
Katalog-ID: |
DOAJ043733018 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ043733018 | ||
003 | DE-627 | ||
005 | 20230227091353.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2017/3246934 |2 doi | |
035 | |a (DE-627)DOAJ043733018 | ||
035 | |a (DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QA1-939 | |
100 | 0 | |a Jianjun Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the GI/M/1 Queue with Vacations and Multiple Service Phases |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. | ||
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Liwei Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematical Problems in Engineering |d Hindawi Limited, 2002 |g (2017) |w (DE-627)320519937 |w (DE-600)2014442-8 |x 1024123X |7 nnns |
773 | 1 | 8 | |g year:2017 |
856 | 4 | 0 | |u https://doi.org/10.1155/2017/3246934 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2017/3246934 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1024-123X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1563-5147 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2017 |
author_variant |
j l jl l l ll |
---|---|
matchkey_str |
article:1024123X:2017----::nhgmqeeihaainadutp |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
TA |
publishDate |
2017 |
allfields |
10.1155/2017/3246934 doi (DE-627)DOAJ043733018 (DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Jianjun Li verfasserin aut On the GI/M/1 Queue with Vacations and Multiple Service Phases 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. Engineering (General). Civil engineering (General) Mathematics Liwei Liu verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2017) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2017 https://doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e kostenfrei http://dx.doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
spelling |
10.1155/2017/3246934 doi (DE-627)DOAJ043733018 (DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Jianjun Li verfasserin aut On the GI/M/1 Queue with Vacations and Multiple Service Phases 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. Engineering (General). Civil engineering (General) Mathematics Liwei Liu verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2017) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2017 https://doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e kostenfrei http://dx.doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
allfields_unstemmed |
10.1155/2017/3246934 doi (DE-627)DOAJ043733018 (DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Jianjun Li verfasserin aut On the GI/M/1 Queue with Vacations and Multiple Service Phases 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. Engineering (General). Civil engineering (General) Mathematics Liwei Liu verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2017) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2017 https://doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e kostenfrei http://dx.doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
allfieldsGer |
10.1155/2017/3246934 doi (DE-627)DOAJ043733018 (DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Jianjun Li verfasserin aut On the GI/M/1 Queue with Vacations and Multiple Service Phases 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. Engineering (General). Civil engineering (General) Mathematics Liwei Liu verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2017) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2017 https://doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e kostenfrei http://dx.doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
allfieldsSound |
10.1155/2017/3246934 doi (DE-627)DOAJ043733018 (DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Jianjun Li verfasserin aut On the GI/M/1 Queue with Vacations and Multiple Service Phases 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. Engineering (General). Civil engineering (General) Mathematics Liwei Liu verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2017) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2017 https://doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e kostenfrei http://dx.doi.org/10.1155/2017/3246934 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
language |
English |
source |
In Mathematical Problems in Engineering (2017) year:2017 |
sourceStr |
In Mathematical Problems in Engineering (2017) year:2017 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Engineering (General). Civil engineering (General) Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematical Problems in Engineering |
authorswithroles_txt_mv |
Jianjun Li @@aut@@ Liwei Liu @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
320519937 |
id |
DOAJ043733018 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ043733018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230227091353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2017/3246934</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ043733018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianjun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the GI/M/1 Queue with Vacations and Multiple Service Phases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liwei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2017/3246934</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2017/3246934</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianjun Li |
spellingShingle |
Jianjun Li misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics On the GI/M/1 Queue with Vacations and Multiple Service Phases |
authorStr |
Jianjun Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320519937 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
1024123X |
topic_title |
TA1-2040 QA1-939 On the GI/M/1 Queue with Vacations and Multiple Service Phases |
topic |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_unstemmed |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_browse |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematical Problems in Engineering |
hierarchy_parent_id |
320519937 |
hierarchy_top_title |
Mathematical Problems in Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320519937 (DE-600)2014442-8 |
title |
On the GI/M/1 Queue with Vacations and Multiple Service Phases |
ctrlnum |
(DE-627)DOAJ043733018 (DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e |
title_full |
On the GI/M/1 Queue with Vacations and Multiple Service Phases |
author_sort |
Jianjun Li |
journal |
Mathematical Problems in Engineering |
journalStr |
Mathematical Problems in Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Jianjun Li Liwei Liu |
class |
TA1-2040 QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianjun Li |
doi_str_mv |
10.1155/2017/3246934 |
author2-role |
verfasserin |
title_sort |
on the gi/m/1 queue with vacations and multiple service phases |
callnumber |
TA1-2040 |
title_auth |
On the GI/M/1 Queue with Vacations and Multiple Service Phases |
abstract |
This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. |
abstractGer |
This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. |
abstract_unstemmed |
This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
On the GI/M/1 Queue with Vacations and Multiple Service Phases |
url |
https://doi.org/10.1155/2017/3246934 https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e http://dx.doi.org/10.1155/2017/3246934 https://doaj.org/toc/1024-123X https://doaj.org/toc/1563-5147 |
remote_bool |
true |
author2 |
Liwei Liu |
author2Str |
Liwei Liu |
ppnlink |
320519937 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2017/3246934 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:11:32.091Z |
_version_ |
1803586258442649600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ043733018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230227091353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2017/3246934</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ043733018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9c5cd4e291c74da998a4817ff260a93e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianjun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the GI/M/1 Queue with Vacations and Multiple Service Phases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper considers a GI/M/1 queue with vacations and multiple service phases. Whenever the system becomes empty, the server takes a vacation, causing the system to move to vacation phase 0. If the server returns from a vacation to find no customer waiting, another vacation begins. Otherwise, the system jumps from phase 0 to some service phase i with probability qi, i=1,2,…,N. Using the matrix geometric solution method and semi-Markov process, we obtain the distributions of the stationary system size at both arrival and arbitrary epochs. The distribution of the stationary waiting time of an arbitrary customer is also derived. In addition, we present some performance measures such as mean waiting time of an arbitrary customer, mean length of the type-i cycle, and mean number of customers in the system at the end of phase 0. Finally, some numerical examples are presented.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liwei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2017/3246934</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9c5cd4e291c74da998a4817ff260a93e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2017/3246934</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
score |
7.401638 |