RNMFMDA: A Microbe-Disease Association Identification Method Based on Reliable Negative Sample Selection and Logistic Matrix Factorization With Neighborhood Regularization

Microbes with abnormal levels have important impacts on the formation and development of various complex diseases. Identifying possible Microbe-Disease Associations (MDAs) helps to understand the mechanisms of complex diseases. However, experimental methods for MDA identification are costly and time...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Lihong Peng [verfasserIn]

Ling Shen [verfasserIn]

Longjie Liao [verfasserIn]

Guangyi Liu [verfasserIn]

Liqian Zhou [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

microbe-disease associations

reliable negative samples

positive-unlabeled learning

random walk with restart

logistic matrix factorization with neighborhood regularization

Übergeordnetes Werk:

In: Frontiers in Microbiology - Frontiers Media S.A., 2011, 11(2020)

Übergeordnetes Werk:

volume:11 ; year:2020

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.3389/fmicb.2020.592430

Katalog-ID:

DOAJ044075049

Nicht das Richtige dabei?

Schreiben Sie uns!