Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic
<b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for predic...
Ausführliche Beschreibung
Autor*in: |
Jose M. Martin-Moreno [verfasserIn] Antoni Alegre-Martinez [verfasserIn] Victor Martin-Gorgojo [verfasserIn] Jose Luis Alfonso-Sanchez [verfasserIn] Ferran Torres [verfasserIn] Vicente Pallares-Carratala [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 19(2022), 5546, p 5546 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2022 ; number:5546, p 5546 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph19095546 |
---|
Katalog-ID: |
DOAJ044077610 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044077610 | ||
003 | DE-627 | ||
005 | 20230308075738.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph19095546 |2 doi | |
035 | |a (DE-627)DOAJ044077610 | ||
035 | |a (DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Jose M. Martin-Moreno |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. | ||
650 | 4 | |a COVID-19 | |
650 | 4 | |a health policy | |
650 | 4 | |a public health | |
650 | 4 | |a explanatory models | |
650 | 4 | |a forecasting | |
650 | 4 | |a predictive models | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Antoni Alegre-Martinez |e verfasserin |4 aut | |
700 | 0 | |a Victor Martin-Gorgojo |e verfasserin |4 aut | |
700 | 0 | |a Jose Luis Alfonso-Sanchez |e verfasserin |4 aut | |
700 | 0 | |a Ferran Torres |e verfasserin |4 aut | |
700 | 0 | |a Vicente Pallares-Carratala |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 19(2022), 5546, p 5546 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2022 |g number:5546, p 5546 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph19095546 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/19/9/5546 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2022 |e 5546, p 5546 |
author_variant |
j m m m jmmm a a m aam v m g vmg j l a s jlas f t ft v p c vpc |
---|---|
matchkey_str |
article:16604601:2022----::rdcieoesofrcsigulcelhcnropatclxeineapiduigh |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/ijerph19095546 doi (DE-627)DOAJ044077610 (DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca DE-627 ger DE-627 rakwb eng Jose M. Martin-Moreno verfasserin aut Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. COVID-19 health policy public health explanatory models forecasting predictive models Medicine R Antoni Alegre-Martinez verfasserin aut Victor Martin-Gorgojo verfasserin aut Jose Luis Alfonso-Sanchez verfasserin aut Ferran Torres verfasserin aut Vicente Pallares-Carratala verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 5546, p 5546 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:5546, p 5546 https://doi.org/10.3390/ijerph19095546 kostenfrei https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca kostenfrei https://www.mdpi.com/1660-4601/19/9/5546 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 5546, p 5546 |
spelling |
10.3390/ijerph19095546 doi (DE-627)DOAJ044077610 (DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca DE-627 ger DE-627 rakwb eng Jose M. Martin-Moreno verfasserin aut Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. COVID-19 health policy public health explanatory models forecasting predictive models Medicine R Antoni Alegre-Martinez verfasserin aut Victor Martin-Gorgojo verfasserin aut Jose Luis Alfonso-Sanchez verfasserin aut Ferran Torres verfasserin aut Vicente Pallares-Carratala verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 5546, p 5546 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:5546, p 5546 https://doi.org/10.3390/ijerph19095546 kostenfrei https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca kostenfrei https://www.mdpi.com/1660-4601/19/9/5546 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 5546, p 5546 |
allfields_unstemmed |
10.3390/ijerph19095546 doi (DE-627)DOAJ044077610 (DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca DE-627 ger DE-627 rakwb eng Jose M. Martin-Moreno verfasserin aut Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. COVID-19 health policy public health explanatory models forecasting predictive models Medicine R Antoni Alegre-Martinez verfasserin aut Victor Martin-Gorgojo verfasserin aut Jose Luis Alfonso-Sanchez verfasserin aut Ferran Torres verfasserin aut Vicente Pallares-Carratala verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 5546, p 5546 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:5546, p 5546 https://doi.org/10.3390/ijerph19095546 kostenfrei https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca kostenfrei https://www.mdpi.com/1660-4601/19/9/5546 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 5546, p 5546 |
allfieldsGer |
10.3390/ijerph19095546 doi (DE-627)DOAJ044077610 (DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca DE-627 ger DE-627 rakwb eng Jose M. Martin-Moreno verfasserin aut Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. COVID-19 health policy public health explanatory models forecasting predictive models Medicine R Antoni Alegre-Martinez verfasserin aut Victor Martin-Gorgojo verfasserin aut Jose Luis Alfonso-Sanchez verfasserin aut Ferran Torres verfasserin aut Vicente Pallares-Carratala verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 5546, p 5546 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:5546, p 5546 https://doi.org/10.3390/ijerph19095546 kostenfrei https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca kostenfrei https://www.mdpi.com/1660-4601/19/9/5546 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 5546, p 5546 |
allfieldsSound |
10.3390/ijerph19095546 doi (DE-627)DOAJ044077610 (DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca DE-627 ger DE-627 rakwb eng Jose M. Martin-Moreno verfasserin aut Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. COVID-19 health policy public health explanatory models forecasting predictive models Medicine R Antoni Alegre-Martinez verfasserin aut Victor Martin-Gorgojo verfasserin aut Jose Luis Alfonso-Sanchez verfasserin aut Ferran Torres verfasserin aut Vicente Pallares-Carratala verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 19(2022), 5546, p 5546 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:19 year:2022 number:5546, p 5546 https://doi.org/10.3390/ijerph19095546 kostenfrei https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca kostenfrei https://www.mdpi.com/1660-4601/19/9/5546 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2022 5546, p 5546 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 19(2022), 5546, p 5546 volume:19 year:2022 number:5546, p 5546 |
sourceStr |
In International Journal of Environmental Research and Public Health 19(2022), 5546, p 5546 volume:19 year:2022 number:5546, p 5546 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
COVID-19 health policy public health explanatory models forecasting predictive models Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Jose M. Martin-Moreno @@aut@@ Antoni Alegre-Martinez @@aut@@ Victor Martin-Gorgojo @@aut@@ Jose Luis Alfonso-Sanchez @@aut@@ Ferran Torres @@aut@@ Vicente Pallares-Carratala @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ044077610 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044077610</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308075738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph19095546</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044077610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jose M. Martin-Moreno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">health policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">public health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explanatory models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predictive models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antoni Alegre-Martinez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Martin-Gorgojo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jose Luis Alfonso-Sanchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ferran Torres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vicente Pallares-Carratala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">19(2022), 5546, p 5546</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5546, p 5546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph19095546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/19/9/5546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2022</subfield><subfield code="e">5546, p 5546</subfield></datafield></record></collection>
|
author |
Jose M. Martin-Moreno |
spellingShingle |
Jose M. Martin-Moreno misc COVID-19 misc health policy misc public health misc explanatory models misc forecasting misc predictive models misc Medicine misc R Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic |
authorStr |
Jose M. Martin-Moreno |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic COVID-19 health policy public health explanatory models forecasting predictive models |
topic |
misc COVID-19 misc health policy misc public health misc explanatory models misc forecasting misc predictive models misc Medicine misc R |
topic_unstemmed |
misc COVID-19 misc health policy misc public health misc explanatory models misc forecasting misc predictive models misc Medicine misc R |
topic_browse |
misc COVID-19 misc health policy misc public health misc explanatory models misc forecasting misc predictive models misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic |
ctrlnum |
(DE-627)DOAJ044077610 (DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca |
title_full |
Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic |
author_sort |
Jose M. Martin-Moreno |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jose M. Martin-Moreno Antoni Alegre-Martinez Victor Martin-Gorgojo Jose Luis Alfonso-Sanchez Ferran Torres Vicente Pallares-Carratala |
container_volume |
19 |
format_se |
Elektronische Aufsätze |
author-letter |
Jose M. Martin-Moreno |
doi_str_mv |
10.3390/ijerph19095546 |
author2-role |
verfasserin |
title_sort |
predictive models for forecasting public health scenarios: practical experiences applied during the first wave of the covid-19 pandemic |
title_auth |
Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic |
abstract |
<b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. |
abstractGer |
<b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. |
abstract_unstemmed |
<b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5546, p 5546 |
title_short |
Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic |
url |
https://doi.org/10.3390/ijerph19095546 https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca https://www.mdpi.com/1660-4601/19/9/5546 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
Antoni Alegre-Martinez Victor Martin-Gorgojo Jose Luis Alfonso-Sanchez Ferran Torres Vicente Pallares-Carratala |
author2Str |
Antoni Alegre-Martinez Victor Martin-Gorgojo Jose Luis Alfonso-Sanchez Ferran Torres Vicente Pallares-Carratala |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph19095546 |
up_date |
2024-07-03T21:05:38.191Z |
_version_ |
1803593437106143232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044077610</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308075738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph19095546</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044077610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f5cf3c358af43ae982a89a63cf213ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jose M. Martin-Moreno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><b<Background:</b< Forecasting the behavior of epidemic outbreaks is vital in public health. This makes it possible to anticipate the planning and organization of the health system, as well as possible restrictive or preventive measures. During the COVID-19 pandemic, this need for prediction has been crucial. This paper attempts to characterize the alternative models that were applied in the first wave of this pandemic context, trying to shed light that could help to understand them for future practical applications. <b<Methods:</b< A systematic literature search was performed in standardized bibliographic repertoires, using keywords and Boolean operators to refine the findings, and selecting articles according to the main PRISMA 2020 statement recommendations. <b<Results:</b< After identifying models used throughout the first wave of this pandemic (between March and June 2020), we begin by examining standard data-driven epidemiological models, including studies applying models such as SIR (Susceptible-Infected-Recovered), SQUIDER, SEIR, time-dependent SIR, and other alternatives. For data-driven methods, we identify experiences using autoregressive integrated moving average (ARIMA), evolutionary genetic programming machine learning, short-term memory (LSTM), and global epidemic and mobility models. <b<Conclusions:</b< The COVID-19 pandemic has led to intensive and evolving use of alternative infectious disease prediction models. At this point it is not easy to decide which prediction method is the best in a generic way. Moreover, although models such as the LSTM emerge as remarkably versatile and useful, the practical applicability of the alternatives depends on the specific context of the underlying variable and on the information of the target to be prioritized. In addition, the robustness of the assessment is conditioned by heterogeneity in the quality of information sources and differences in the characteristics of disease control interventions. Further comprehensive comparison of the performance of models in comparable situations, assessing their predictive validity, is needed. This will help determine the most reliable and practical methods for application in future outbreaks and eventual pandemics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">health policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">public health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explanatory models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predictive models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antoni Alegre-Martinez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Martin-Gorgojo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jose Luis Alfonso-Sanchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ferran Torres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vicente Pallares-Carratala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">19(2022), 5546, p 5546</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5546, p 5546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph19095546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f5cf3c358af43ae982a89a63cf213ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/19/9/5546</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2022</subfield><subfield code="e">5546, p 5546</subfield></datafield></record></collection>
|
score |
7.4013834 |