Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim.
Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major...
Ausführliche Beschreibung
Autor*in: |
Chang Ha Park [verfasserIn] Hyeon Ji Yeo [verfasserIn] Nam Su Kim [verfasserIn] Ye Eun Park [verfasserIn] Soo-Yun Park [verfasserIn] Jae Kwang Kim [verfasserIn] Sang Un Park [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Molecules - MDPI AG, 2003, 23(2018), 4, p 827 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2018 ; number:4, p 827 |
Links: |
---|
DOI / URN: |
10.3390/molecules23040827 |
---|
Katalog-ID: |
DOAJ044121547 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044121547 | ||
003 | DE-627 | ||
005 | 20230308080004.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/molecules23040827 |2 doi | |
035 | |a (DE-627)DOAJ044121547 | ||
035 | |a (DE-599)DOAJ990c035af34a447a872160e5e80ac2e5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Chang Ha Park |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). | ||
650 | 4 | |a Rhododendron schlippenbachii Maxim. | |
650 | 4 | |a anthocyanin | |
650 | 4 | |a metabolomic profiling | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Hyeon Ji Yeo |e verfasserin |4 aut | |
700 | 0 | |a Nam Su Kim |e verfasserin |4 aut | |
700 | 0 | |a Ye Eun Park |e verfasserin |4 aut | |
700 | 0 | |a Soo-Yun Park |e verfasserin |4 aut | |
700 | 0 | |a Jae Kwang Kim |e verfasserin |4 aut | |
700 | 0 | |a Sang Un Park |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Molecules |d MDPI AG, 2003 |g 23(2018), 4, p 827 |w (DE-627)311313132 |w (DE-600)2008644-1 |x 14203049 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2018 |g number:4, p 827 |
856 | 4 | 0 | |u https://doi.org/10.3390/molecules23040827 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/990c035af34a447a872160e5e80ac2e5 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1420-3049/23/4/827 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1420-3049 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2018 |e 4, p 827 |
author_variant |
c h p chp h j y hjy n s k nsk y e p yep s y p syp j k k jkk s u p sup |
---|---|
matchkey_str |
article:14203049:2018----::eaooipoiigfhwieiltnrdlwrorooed |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QD |
publishDate |
2018 |
allfields |
10.3390/molecules23040827 doi (DE-627)DOAJ044121547 (DE-599)DOAJ990c035af34a447a872160e5e80ac2e5 DE-627 ger DE-627 rakwb eng QD241-441 Chang Ha Park verfasserin aut Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). Rhododendron schlippenbachii Maxim. anthocyanin metabolomic profiling Organic chemistry Hyeon Ji Yeo verfasserin aut Nam Su Kim verfasserin aut Ye Eun Park verfasserin aut Soo-Yun Park verfasserin aut Jae Kwang Kim verfasserin aut Sang Un Park verfasserin aut In Molecules MDPI AG, 2003 23(2018), 4, p 827 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:23 year:2018 number:4, p 827 https://doi.org/10.3390/molecules23040827 kostenfrei https://doaj.org/article/990c035af34a447a872160e5e80ac2e5 kostenfrei http://www.mdpi.com/1420-3049/23/4/827 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2018 4, p 827 |
spelling |
10.3390/molecules23040827 doi (DE-627)DOAJ044121547 (DE-599)DOAJ990c035af34a447a872160e5e80ac2e5 DE-627 ger DE-627 rakwb eng QD241-441 Chang Ha Park verfasserin aut Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). Rhododendron schlippenbachii Maxim. anthocyanin metabolomic profiling Organic chemistry Hyeon Ji Yeo verfasserin aut Nam Su Kim verfasserin aut Ye Eun Park verfasserin aut Soo-Yun Park verfasserin aut Jae Kwang Kim verfasserin aut Sang Un Park verfasserin aut In Molecules MDPI AG, 2003 23(2018), 4, p 827 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:23 year:2018 number:4, p 827 https://doi.org/10.3390/molecules23040827 kostenfrei https://doaj.org/article/990c035af34a447a872160e5e80ac2e5 kostenfrei http://www.mdpi.com/1420-3049/23/4/827 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2018 4, p 827 |
allfields_unstemmed |
10.3390/molecules23040827 doi (DE-627)DOAJ044121547 (DE-599)DOAJ990c035af34a447a872160e5e80ac2e5 DE-627 ger DE-627 rakwb eng QD241-441 Chang Ha Park verfasserin aut Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). Rhododendron schlippenbachii Maxim. anthocyanin metabolomic profiling Organic chemistry Hyeon Ji Yeo verfasserin aut Nam Su Kim verfasserin aut Ye Eun Park verfasserin aut Soo-Yun Park verfasserin aut Jae Kwang Kim verfasserin aut Sang Un Park verfasserin aut In Molecules MDPI AG, 2003 23(2018), 4, p 827 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:23 year:2018 number:4, p 827 https://doi.org/10.3390/molecules23040827 kostenfrei https://doaj.org/article/990c035af34a447a872160e5e80ac2e5 kostenfrei http://www.mdpi.com/1420-3049/23/4/827 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2018 4, p 827 |
allfieldsGer |
10.3390/molecules23040827 doi (DE-627)DOAJ044121547 (DE-599)DOAJ990c035af34a447a872160e5e80ac2e5 DE-627 ger DE-627 rakwb eng QD241-441 Chang Ha Park verfasserin aut Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). Rhododendron schlippenbachii Maxim. anthocyanin metabolomic profiling Organic chemistry Hyeon Ji Yeo verfasserin aut Nam Su Kim verfasserin aut Ye Eun Park verfasserin aut Soo-Yun Park verfasserin aut Jae Kwang Kim verfasserin aut Sang Un Park verfasserin aut In Molecules MDPI AG, 2003 23(2018), 4, p 827 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:23 year:2018 number:4, p 827 https://doi.org/10.3390/molecules23040827 kostenfrei https://doaj.org/article/990c035af34a447a872160e5e80ac2e5 kostenfrei http://www.mdpi.com/1420-3049/23/4/827 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2018 4, p 827 |
allfieldsSound |
10.3390/molecules23040827 doi (DE-627)DOAJ044121547 (DE-599)DOAJ990c035af34a447a872160e5e80ac2e5 DE-627 ger DE-627 rakwb eng QD241-441 Chang Ha Park verfasserin aut Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). Rhododendron schlippenbachii Maxim. anthocyanin metabolomic profiling Organic chemistry Hyeon Ji Yeo verfasserin aut Nam Su Kim verfasserin aut Ye Eun Park verfasserin aut Soo-Yun Park verfasserin aut Jae Kwang Kim verfasserin aut Sang Un Park verfasserin aut In Molecules MDPI AG, 2003 23(2018), 4, p 827 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:23 year:2018 number:4, p 827 https://doi.org/10.3390/molecules23040827 kostenfrei https://doaj.org/article/990c035af34a447a872160e5e80ac2e5 kostenfrei http://www.mdpi.com/1420-3049/23/4/827 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2018 4, p 827 |
language |
English |
source |
In Molecules 23(2018), 4, p 827 volume:23 year:2018 number:4, p 827 |
sourceStr |
In Molecules 23(2018), 4, p 827 volume:23 year:2018 number:4, p 827 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rhododendron schlippenbachii Maxim. anthocyanin metabolomic profiling Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Molecules |
authorswithroles_txt_mv |
Chang Ha Park @@aut@@ Hyeon Ji Yeo @@aut@@ Nam Su Kim @@aut@@ Ye Eun Park @@aut@@ Soo-Yun Park @@aut@@ Jae Kwang Kim @@aut@@ Sang Un Park @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
311313132 |
id |
DOAJ044121547 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044121547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308080004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules23040827</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044121547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ990c035af34a447a872160e5e80ac2e5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chang Ha Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p &lt; 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rhododendron schlippenbachii Maxim.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anthocyanin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolomic profiling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyeon Ji Yeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nam Su Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye Eun Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soo-Yun Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jae Kwang Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang Un Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2018), 4, p 827</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4, p 827</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules23040827</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/990c035af34a447a872160e5e80ac2e5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1420-3049/23/4/827</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2018</subfield><subfield code="e">4, p 827</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chang Ha Park |
spellingShingle |
Chang Ha Park misc QD241-441 misc Rhododendron schlippenbachii Maxim. misc anthocyanin misc metabolomic profiling misc Organic chemistry Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. |
authorStr |
Chang Ha Park |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)311313132 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
14203049 |
topic_title |
QD241-441 Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim Rhododendron schlippenbachii Maxim anthocyanin metabolomic profiling |
topic |
misc QD241-441 misc Rhododendron schlippenbachii Maxim. misc anthocyanin misc metabolomic profiling misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc Rhododendron schlippenbachii Maxim. misc anthocyanin misc metabolomic profiling misc Organic chemistry |
topic_browse |
misc QD241-441 misc Rhododendron schlippenbachii Maxim. misc anthocyanin misc metabolomic profiling misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecules |
hierarchy_parent_id |
311313132 |
hierarchy_top_title |
Molecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)311313132 (DE-600)2008644-1 |
title |
Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. |
ctrlnum |
(DE-627)DOAJ044121547 (DE-599)DOAJ990c035af34a447a872160e5e80ac2e5 |
title_full |
Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim |
author_sort |
Chang Ha Park |
journal |
Molecules |
journalStr |
Molecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Chang Ha Park Hyeon Ji Yeo Nam Su Kim Ye Eun Park Soo-Yun Park Jae Kwang Kim Sang Un Park |
container_volume |
23 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Chang Ha Park |
doi_str_mv |
10.3390/molecules23040827 |
author2-role |
verfasserin |
title_sort |
metabolomic profiling of the white, violet, and red flowers of rhododendron schlippenbachii maxim |
callnumber |
QD241-441 |
title_auth |
Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. |
abstract |
Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). |
abstractGer |
Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). |
abstract_unstemmed |
Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p < 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 827 |
title_short |
Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim. |
url |
https://doi.org/10.3390/molecules23040827 https://doaj.org/article/990c035af34a447a872160e5e80ac2e5 http://www.mdpi.com/1420-3049/23/4/827 https://doaj.org/toc/1420-3049 |
remote_bool |
true |
author2 |
Hyeon Ji Yeo Nam Su Kim Ye Eun Park Soo-Yun Park Jae Kwang Kim Sang Un Park |
author2Str |
Hyeon Ji Yeo Nam Su Kim Ye Eun Park Soo-Yun Park Jae Kwang Kim Sang Un Park |
ppnlink |
311313132 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/molecules23040827 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T21:20:25.812Z |
_version_ |
1803594367829540864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044121547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308080004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules23040827</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044121547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ990c035af34a447a872160e5e80ac2e5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chang Ha Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rhododendron schlippenbachii Maxim. is a garden plant that is also used for natural medicines as a consequence of the biological activities of its diverse metabolites. We accordingly profiled two anthocyanins and 40 primary and secondary metabolites in the three different colored flowers. The major anthocyanins found in the flowers were cyanidins. The red flowers exhibited the highest accumulation of anthocyanins (1.02 +- 0.02 mg/g dry weight). Principal component analysis was applied to the GC‒TOFMS data. The levels of key tricarboxylic acid cycle intermediates in red flowers, such as succinic acid, fumaric acid, and malic acid, were found to be highly significantly different (p &lt; 0.0001) from those in the flowers of other colors. In this study, we aimed to determine metabolite interactions and phenotypic variation among white, violet, and red flowers of R. schlippenbachii by using gas chromatography time-of-flight mass spectrometry (GC‒TOFMS) and high-performance liquid chromatography (HPLC).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rhododendron schlippenbachii Maxim.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anthocyanin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolomic profiling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyeon Ji Yeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nam Su Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye Eun Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soo-Yun Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jae Kwang Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang Un Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2018), 4, p 827</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4, p 827</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules23040827</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/990c035af34a447a872160e5e80ac2e5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1420-3049/23/4/827</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2018</subfield><subfield code="e">4, p 827</subfield></datafield></record></collection>
|
score |
7.402231 |