The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model
The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of cloth...
Ausführliche Beschreibung
Autor*in: |
Qianqian Huang [verfasserIn] Jun Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 17(2020), 6475, p 6475 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2020 ; number:6475, p 6475 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph17186475 |
---|
Katalog-ID: |
DOAJ044325177 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044325177 | ||
003 | DE-627 | ||
005 | 20230308081116.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph17186475 |2 doi | |
035 | |a (DE-627)DOAJ044325177 | ||
035 | |a (DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Qianqian Huang |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. | ||
650 | 4 | |a PHS model | |
650 | 4 | |a heat strain | |
650 | 4 | |a heat stress | |
650 | 4 | |a clothing insulation | |
650 | 4 | |a clothing dynamic insulation | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Jun Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 17(2020), 6475, p 6475 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2020 |g number:6475, p 6475 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph17186475 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/17/18/6475 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2020 |e 6475, p 6475 |
author_variant |
q h qh j l jl |
---|---|
matchkey_str |
article:16604601:2020----::hefcsfhdnmchrohsclrprisfltignteaknsednuprmtrnhhasri |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/ijerph17186475 doi (DE-627)DOAJ044325177 (DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8 DE-627 ger DE-627 rakwb eng Qianqian Huang verfasserin aut The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. PHS model heat strain heat stress clothing insulation clothing dynamic insulation Medicine R Jun Li verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 6475, p 6475 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:6475, p 6475 https://doi.org/10.3390/ijerph17186475 kostenfrei https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8 kostenfrei https://www.mdpi.com/1660-4601/17/18/6475 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 6475, p 6475 |
spelling |
10.3390/ijerph17186475 doi (DE-627)DOAJ044325177 (DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8 DE-627 ger DE-627 rakwb eng Qianqian Huang verfasserin aut The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. PHS model heat strain heat stress clothing insulation clothing dynamic insulation Medicine R Jun Li verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 6475, p 6475 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:6475, p 6475 https://doi.org/10.3390/ijerph17186475 kostenfrei https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8 kostenfrei https://www.mdpi.com/1660-4601/17/18/6475 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 6475, p 6475 |
allfields_unstemmed |
10.3390/ijerph17186475 doi (DE-627)DOAJ044325177 (DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8 DE-627 ger DE-627 rakwb eng Qianqian Huang verfasserin aut The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. PHS model heat strain heat stress clothing insulation clothing dynamic insulation Medicine R Jun Li verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 6475, p 6475 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:6475, p 6475 https://doi.org/10.3390/ijerph17186475 kostenfrei https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8 kostenfrei https://www.mdpi.com/1660-4601/17/18/6475 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 6475, p 6475 |
allfieldsGer |
10.3390/ijerph17186475 doi (DE-627)DOAJ044325177 (DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8 DE-627 ger DE-627 rakwb eng Qianqian Huang verfasserin aut The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. PHS model heat strain heat stress clothing insulation clothing dynamic insulation Medicine R Jun Li verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 6475, p 6475 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:6475, p 6475 https://doi.org/10.3390/ijerph17186475 kostenfrei https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8 kostenfrei https://www.mdpi.com/1660-4601/17/18/6475 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 6475, p 6475 |
allfieldsSound |
10.3390/ijerph17186475 doi (DE-627)DOAJ044325177 (DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8 DE-627 ger DE-627 rakwb eng Qianqian Huang verfasserin aut The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. PHS model heat strain heat stress clothing insulation clothing dynamic insulation Medicine R Jun Li verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 6475, p 6475 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:6475, p 6475 https://doi.org/10.3390/ijerph17186475 kostenfrei https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8 kostenfrei https://www.mdpi.com/1660-4601/17/18/6475 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 6475, p 6475 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 17(2020), 6475, p 6475 volume:17 year:2020 number:6475, p 6475 |
sourceStr |
In International Journal of Environmental Research and Public Health 17(2020), 6475, p 6475 volume:17 year:2020 number:6475, p 6475 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
PHS model heat strain heat stress clothing insulation clothing dynamic insulation Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Qianqian Huang @@aut@@ Jun Li @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ044325177 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044325177</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308081116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph17186475</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044325177</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qianqian Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PHS model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clothing insulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clothing dynamic insulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">17(2020), 6475, p 6475</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6475, p 6475</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph17186475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/17/18/6475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2020</subfield><subfield code="e">6475, p 6475</subfield></datafield></record></collection>
|
author |
Qianqian Huang |
spellingShingle |
Qianqian Huang misc PHS model misc heat strain misc heat stress misc clothing insulation misc clothing dynamic insulation misc Medicine misc R The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model |
authorStr |
Qianqian Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model PHS model heat strain heat stress clothing insulation clothing dynamic insulation |
topic |
misc PHS model misc heat strain misc heat stress misc clothing insulation misc clothing dynamic insulation misc Medicine misc R |
topic_unstemmed |
misc PHS model misc heat strain misc heat stress misc clothing insulation misc clothing dynamic insulation misc Medicine misc R |
topic_browse |
misc PHS model misc heat strain misc heat stress misc clothing insulation misc clothing dynamic insulation misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model |
ctrlnum |
(DE-627)DOAJ044325177 (DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8 |
title_full |
The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model |
author_sort |
Qianqian Huang |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Qianqian Huang Jun Li |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Qianqian Huang |
doi_str_mv |
10.3390/ijerph17186475 |
author2-role |
verfasserin |
title_sort |
effects of the dynamic thermophysical properties of clothing and the walking speed input parameter on the heat strain of a human body predicted by the phs model |
title_auth |
The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model |
abstract |
The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. |
abstractGer |
The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. |
abstract_unstemmed |
The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6475, p 6475 |
title_short |
The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model |
url |
https://doi.org/10.3390/ijerph17186475 https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8 https://www.mdpi.com/1660-4601/17/18/6475 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
Jun Li |
author2Str |
Jun Li |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph17186475 |
up_date |
2024-07-03T22:26:02.723Z |
_version_ |
1803598495978881024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044325177</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308081116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph17186475</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044325177</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ490a3da398484e3bbfe17bb2a5cf65d8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qianqian Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PHS model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clothing insulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clothing dynamic insulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">17(2020), 6475, p 6475</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6475, p 6475</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph17186475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/490a3da398484e3bbfe17bb2a5cf65d8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/17/18/6475</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2020</subfield><subfield code="e">6475, p 6475</subfield></datafield></record></collection>
|
score |
7.4011335 |